Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Структурные средние. применяются для изучения внутреннего строения и структуры рядов распределения значений признака





применяются для изучения внутреннего строения и структуры рядов распределения значений признака. К таким показателям относятся мода и медиана.

Мода – значение случайной величины, встречающееся с наибольшей вероятностью, в дискретном вариационном ряду ряду – вариант, имеющий наибольшую частоту.

Например, в табл.7.1 наибольшей частотой является число 5. Этой частоте соответствует модальное значение признака, т.е. выработка деталей за смену. Мода свидетельствует, что в данном примере чаще всего встречаются рабочие, изготавливающие за смену 20 деталей.

В интервальных рядах распределения с равными интервалами мода вычисляется по формуле:

fМо + f Мо-1

Мо = Х Мо + i Мо --------------------------------------(6.12)

(fМо + f Мо-1) – (fМо + f Мо+1)

Где ХМо – нижняя граница модального интервала;

iМо – модальный интервал;

fМо, f Мо-1, f Мо+1 – частоты в модальной, предыдущем и следующем за модальным интервалах (соответственно).

Модальный интервал определяется по наибольшей частоте.

По данным задачи 6 рассчитаем моду.

Мо = 3+2 ((115-60)/ (115-60) + (115-43)) = 3, 7 лет.

Медиана – это вариант, который находится в середине вариационного ряда. Медиана делит ряд на две равные части (по числе единиц) – со значениями признака меньше медианы и со значениями признака больше медианы. Что бы найти медиану необходимо отыскать значение признака, которое находится в середине упорядоченного ряда. В ранжированных рядах несгруппированных данных нахождение медианы сводится к отысканию порядкового номера медианы.

NМе = (n + 1) /2(6.13)

Где n – число членов ряда.

Например. Имеются данные по зарплате 9 работников, руб.

6300, 6500, 6800, 6900, 7000, 7100, 7200, 7300, 7500

NМе = 5 Ме= 7000 руб. (т.е. одна половины рабочих получила зарплату менее 7000 руб., а другая – более.)

В случае четного объема ряда медиана равна средней из двух вариантов, находящихся в середине ряда.

В интервальных рядах распределения медиана определяется по формуле:

 

(∑ f) /2 - S Ме-1

Ме =ХМе + iМе--------------------- (6.14)

f Ме

Где ХМе – нижняя граница медианного интервала;

iМе – медианный интервал;

(∑ f) /2 - половина от общего числа наблюдений;

S Ме-1 - сумма наблюдений, накопленная до начала медианного интервала;

f Ме - число наблюдений в медианном интервале.

Рассчитаем медиану по данным задачи 6. Прежде найдем медианный интервал. Таким интервалом очевидно будет 2 интервал (3—5 лет), поскольку его кумулятивная частота равна 60+ 125=185, что превышает половину суммы всех частот (250: 2 = 125). Нижняя граница интервала 3 года., его частота 115; частота накопленная до него, равна 60.

Подставив данные в формулу (6.14), получим, лет:

Ме = 3+2 (125-60)/115 = 4, 13.

Полученный результат говорит о том, что из 250 грузовых машин предприятий 125 машин имеют срок службы менее 4, 13 лет, а 125 машин - более.

Медиана находит практическое применение в маркетинговой деятельности.

Мода и медиана в отличие от степенных средних является конкретными характеристиками, их значение имеет какого-либо конкретный вариант в вариационном ряду.

Мода и медиана, как правило, отличаются от значения средней, совпадая с ней только в случае симметричного распределения частот вариационного ряда. Поэтому соотношении моды, медианы и средней арифметической позволяет оценит ассиметрию ряда распределения.

Мода и медиана, как правило, являются дополнительными к средней характеристиками совокупности и используются математической статистике для анализа формы рядов распределения.







Дата добавления: 2014-11-12; просмотров: 973. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия