Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методы оценки результатов выборочного наблюдения





Ошибки, свойственные выборочному наблюдению, называются ошибкамирепрезентативности или представительства

Систематические ошибки возникают в результате нарушения принципа случайности отбора единиц совокупности для наблюдения. Например, для обследования успеваемости в университете ошибочно отбирают наиболее подготовленных студентов с положительными отметками.

Случайные ошибки возникают ввиду того, что выборочная совокупность недостаточно точно воспроизводит всю совокупность из-за несплошного характера наблюдения.

Средняя величина ошибки для выборочной совокупности, отобранной в случайном порядке:

где μ — средняя ошибка выборки; σ — среднее квадратическое откло­нение; n — численность выборочной совокупности.

 

Средняя ошибка (μ)

выборочных средней (х) и доли (w) для разных видов выборки

 

 

Вид выборки Отбор
    повторный бесповторный
Количественный признак
  Собственно-случайная μ х = √ s2/n μ х = √ (s2 (l-n/N) /n)
       
Альтернативный признак
  Собственно-случайная μ w =√ w(1-w)/n μ w = √ w(l-w)(l-n)/N)/n

 

s  i 2 - средняя групповая выборочная дисперсия средней:

s2 i - внутригрупповая; дисперсия данной (/-и) группы в выборочной совокупности;

w (1 - w) - средняя групповая выборочная дисперсия доли.

 

Формулы предельной ошибки позволяют решать задачи трех видов:

1. Определение пределов генеральных характеристик.

2. Определение доверительной вероятности.

3. Определение необходимого объема выборки.

Предельная ошибка выборки (∆) определяется по формуле

Величины генеральной средней и доли могут быть представле­ны интервальной оценкой в виде определения доверительного интервала по заданному уровню доверительной вероятности Р:

При значении t = 1 вероятность равна 0, 683.

При значении t = 1, 96 вероятность равна 0, 950

При значении t = 2 вероятность равна 0, 954.

При значении t = 3 вероятность равна 0, 997.


8.4. Оценка результатов выборочного наблюдения и распространение его данных на генеральную совокупность

1. Первая оценка точности осуществляется путем сравнения известных показателей обеих совокупностей, находятся отклонения выборочной средней х от генеральной средней , выборочной доли w от генеральной р.

2. Прямой пересчет применяется в том случае, если выборочное наблюдение проводится с целью определения объема генеральной совокупности, когда известна лишь численность генеральной совокупности, но здесь должны быть указаны доверительные интервалы:

а) для средней - ∆ x < Х < + ∆ x.;

б) для доли w - ∆ < р < w + ∆..

Формулы устанавливают границы, в которых при заданной доверительной вероятности находится неизвестная величина оцениваемого параметра: средней х или доли в генеральной совокупности. Вероятность того, что величина генераль­ной средней или доли выйдет за доверительные границы, равня­ется α = 1 - Р и называется уровнем значимости. Для вероятнос­ти Р = 0, 950 или Р = 0, 954 уровень значимости равняется соответ­ственно 0, 050 (или 5, 0%) и 0, 046 (или 4, 6%), и превышение гра­ниц в доверительных интервалах, которое имеет та­кую вероятность, практически невозможно.

3. Метод поправочных коэффициентов проводится с целью уточнения результатов сплошного наблюдения. После проведения сплошного наблюдения проводится выборочное наблюдение и устанавливается так называемый процент недоучета при сплошном наблюдении. Этот процент и будет тем поправочным коэффициентом, который надо распространить на всю генеральную совокупность.







Дата добавления: 2014-11-12; просмотров: 1685. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия