Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

При построении матрицы руководствуются следующими правилами





1. По диагонали от левого верхнего до правого нижнего углов выписываются все коэффициенты по порядку от а1 до аn.

2. Каждая строка дополняется коэффициентами с возрастающими индексами слева направо так, чтобы чередовались строки с нечетными и четными индексами.

3. В случае отсутствия данного коэффициента, если индекс меньше нуля или больше n, на месте его пишется нуль.

(5.12)

Критерий устойчивости сводится к тому, что при а0> 0 должны быть больше нуля все n определителей Гурвица, полученных из квадратной матрицы коэффициентов.

Определители Гурвица составляются по следующему правилу (5.12).

 

; (5.13)

; (5.14)

. (5.15)

Последний определитель Δ n включает в себя всю матрицу. Но так как в последнем столбце матрицы все элементы, кроме нижнего, равны нулю, то последний определитель выражается через предпоследний следующим образом:

Δ n = аn Δ n-1. (5.16)

Но в устойчивой системе предпоследний определитель тоже должен быть больше нуля, поэтому условие положительности последнего определителя сводится к аn > 0.

Условия нахождения системы на границе устойчивости можно получить, приравнивая нулю последний определитель Δ n = 0, при положительности всех остальных определителей. Как следует из (5.16), это условие распадается на два: аn = 0 и Δ n-1 = 0. Первое условие соответствует границе устойчивости первого типа (апериодическая граница устойчивости) и второе – границе второго типа (колебательная граница устойчивости).

Развертывая определители, фигурирующие в общей формулировке критерия устойчивости Гурвица, можно получить в виде частных случаев критерии устойчивости для системы первого, второго, третьего, четвертого и более высоких порядков.

Частные случаи критерия Гурвица.







Дата добавления: 2014-11-12; просмотров: 758. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия