Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

При построении матрицы руководствуются следующими правилами





1. По диагонали от левого верхнего до правого нижнего углов выписываются все коэффициенты по порядку от а1 до аn.

2. Каждая строка дополняется коэффициентами с возрастающими индексами слева направо так, чтобы чередовались строки с нечетными и четными индексами.

3. В случае отсутствия данного коэффициента, если индекс меньше нуля или больше n, на месте его пишется нуль.

(5.12)

Критерий устойчивости сводится к тому, что при а0> 0 должны быть больше нуля все n определителей Гурвица, полученных из квадратной матрицы коэффициентов.

Определители Гурвица составляются по следующему правилу (5.12).

 

; (5.13)

; (5.14)

. (5.15)

Последний определитель Δ n включает в себя всю матрицу. Но так как в последнем столбце матрицы все элементы, кроме нижнего, равны нулю, то последний определитель выражается через предпоследний следующим образом:

Δ n = аn Δ n-1. (5.16)

Но в устойчивой системе предпоследний определитель тоже должен быть больше нуля, поэтому условие положительности последнего определителя сводится к аn > 0.

Условия нахождения системы на границе устойчивости можно получить, приравнивая нулю последний определитель Δ n = 0, при положительности всех остальных определителей. Как следует из (5.16), это условие распадается на два: аn = 0 и Δ n-1 = 0. Первое условие соответствует границе устойчивости первого типа (апериодическая граница устойчивости) и второе – границе второго типа (колебательная граница устойчивости).

Развертывая определители, фигурирующие в общей формулировке критерия устойчивости Гурвица, можно получить в виде частных случаев критерии устойчивости для системы первого, второго, третьего, четвертого и более высоких порядков.

Частные случаи критерия Гурвица.







Дата добавления: 2014-11-12; просмотров: 758. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия