Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Реальное дифференцирующее звено





Звено описывается уравнением

. (3.80)

Передаточная функция звена

. (3.81)

Звено условно можно представить в виде двух включенных последовательно звеньев – идеального дифференцирующего звена и апериодического звена первого порядка.

На рис. 3.29 изображены примеры реальных дифференцирующих звеньев: дифференцирующая RC-цепь (рис. 3.29, а), RL-цепь (рис. 3.29, б) и дифференцирующий трансформатор (рис. 3.29, в).

 

Рис. 3.29. Реальные дифференцирующие звенья

 

Переходная функция определяется решением (3.80) при х1 = 1(t) и нулевых начальных условиях

. (3.82)

Функция веса

. (3.83)

 

Временные характеристики изображены на рис. 3.30. Там же показаны построения, позволяющие по экспериментальным характеристикам определять параметры звена.

Частотная передаточная функция, её модуль и фаза соответственно равны:

; (3.84)

(3.85)

 

Рис. 3.30. Переходная функция (а) и дельта-функция (б) реального дифференцирующего звена

 

Амплитудная, фазовая и амплитудно-фазовая характеристики звена изображены на рис. 3.31.

 

 

Рис. 3.31. АФЧХ (а), АЧХ (б) и ФЧХ (в) реального дифференцирующего звена

 

Амплитудная характеристика реального звена отличается от амплитудной характеристики идеального дифференцирующего звена (показана пунктиром). Характеристики совпадают в области низких частот. В области высоких частот реальное звено пропускает сигнал хуже, чем идеальное звено. Коэффициент передачи стремится к значению k / T при . Для звеньев, представляющих собой RC- или RL-цепь (см. рис. 3.29), коэффициент k / T = 1, и на высоких частотах коэффициент передачи стремится к единице.

Это означает, что в дифференцирующей RC-цепи конденсатор имеет сопротивление, стремящееся к нулю, а в дифференцирующей RL-цепи индуктивность имеет сопротивление, стремящееся к бесконечности. И в том, и в другом случаях напряжение на выходе будет равно напряжению на входе.

Фазовые сдвиги, вносимые звеном, являются наибольшими при низких частотах. На высоких частотах фазовый сдвиг постепенно уменьшается, стремясь в пределе к нулю при . Здесь также видно, что реальное звено ведет себя подобно идеальному только в области низких частот.

Амплитудно-фазовая характеристика для положительных частот представляет собой полуокружность с диаметром, равным k/T. На полуокружности нанесены характерные точки: . Дополнив эту полуокружность её зеркальным изображением относительно вещественной оси, получим полную амплитудно-фазовую характеристику для всех частот, лежащих в пределах .

ЛАХ строится по выражению

. (3.86)

 

Для построения асимптотической ЛАХ (рис. 3.32) проведем вертикальную линию при сопрягающей частоте .

 

Рис. 3.32. ЛАХ и ЛФХ реального дифференцирующего звена

 

Левее этой линии, то есть при , можно воспользоваться приближенным выражением . Этому выражению соответствует прямая линия с положительным наклоном 20 дБ/дек (прямая а–b). Она может быть построена, например, по частоте среза .

Для частот можно пользоваться приближенным выражением . Этому выражению соответствует прямая, параллельная оси частот (b – с). Действительная ЛАХ отличается от асимптотической в точке излома «b» на величину 3 дБ.

На рис. 3.32 показана асимптотическая ЛАХ для случая k = 1 (ломаная прямая d–e–f).

ЛФХ строится по второму уравнению системы (3.85). Для этого сначала строится первое слагаемое y1 = +900, а затем второе y2 = –аrctg ω Т. Результирующая ЛФХ показана сплошной линией. При фазовый сдвиг равен +450.

 







Дата добавления: 2014-11-12; просмотров: 3875. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия