Студопедия — Идеальное интегрирующее звено
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Идеальное интегрирующее звено






Звено описывается уравнением

. (3.54)

В операторной форме

. (3.55)

Или в другой форме записи , откуда и получилось название звена. В идеальном интегрирующем звене выходная величина пропорциональна интегралу по времени от входной или скорость изменения выходной величины пропорциональна входной величине звена.

Передаточная функция звена

. (3.56)

Такое звено является идеализацией реальных интегрирующих звеньев, часть которых будет рассмотрена ниже. Идеальным будет считаться такое звено, у которого можно пренебречь влиянием собственных переходных процессов.

Примеры интегрирующих звеньев приведены на рис. 3.19. Наиболее часто в качестве интегрирующего звена используется операционный усилитель в режиме интегрирования (рис. 3.19, а). Интегрирующим звеном является также обычный гидравлический демпфер (рис. 3.19, б). Входной величиной является здесь сила F, действующая на поршень, а выходной – перемещение поршня x.

 

 

Рис. 3.19. Идеальные интегрирующие звенья

 

Так как скорость движения поршня демпфера пропорциональна приложенной силе

, (3.57)

 

где S – коэффициент скоростного сопротивления, то его перемещение будет пропорциональным интегралу от приложенной силы по времени

 

. (3.58)

 

Передаточная функция демпфера

 

. (3.59)

 

Переходная функция идеального интегрирующего звена при х1 = 1(t) и нулевых начальных условиях

(3.60)

и функция веса

. (3.61)

 

Временные характеристики изображены на рис. 3.20.

 

 

Рис. 3.20. Переходная функция (а) и дельта-функция (б) идеального интегрирующего звена

 

Частотная передаточная функция, её модуль и фаза соответственно равны

w(jw) = k / jw; (3.62)

A(w) = k / w; y = -900 при w > 0; y = +900 при w < 0. (3.63)

Частотные характеристики изображены на рис. 3.21.

 

 

Рис. 3.21. АФЧХ (а), АЧХ (б) и ФЧХ (в) идеального интегрирующего звена

 

Амплитудная характеристика показывает, что звено пропускает сигнал тем сильнее, чем меньше его частота. При ω = 0 модуль . Амплитудно-фазовая характеристика для положительных частот сливается с отрицательной частью оси мнимых.

Построение ЛАХ выполняется по выражению

 

. (3.64)

 

Нетрудно видеть, что ЛАХ представляет собой прямую с отрицательным наклоном 20 дБ/дек, пересекающую ось нуля децибел при частоте среза ω ср = k. ЛФХ представляет собой прямую y = –900, параллельную оси частот.







Дата добавления: 2014-11-12; просмотров: 8707. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Studopedia.info - Студопедия - 2014-2024 год . (0.157 сек.) русская версия | украинская версия