Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Идеальное интегрирующее звено





Звено описывается уравнением

. (3.54)

В операторной форме

. (3.55)

Или в другой форме записи , откуда и получилось название звена. В идеальном интегрирующем звене выходная величина пропорциональна интегралу по времени от входной или скорость изменения выходной величины пропорциональна входной величине звена.

Передаточная функция звена

. (3.56)

Такое звено является идеализацией реальных интегрирующих звеньев, часть которых будет рассмотрена ниже. Идеальным будет считаться такое звено, у которого можно пренебречь влиянием собственных переходных процессов.

Примеры интегрирующих звеньев приведены на рис. 3.19. Наиболее часто в качестве интегрирующего звена используется операционный усилитель в режиме интегрирования (рис. 3.19, а). Интегрирующим звеном является также обычный гидравлический демпфер (рис. 3.19, б). Входной величиной является здесь сила F, действующая на поршень, а выходной – перемещение поршня x.

 

 

Рис. 3.19. Идеальные интегрирующие звенья

 

Так как скорость движения поршня демпфера пропорциональна приложенной силе

, (3.57)

 

где S – коэффициент скоростного сопротивления, то его перемещение будет пропорциональным интегралу от приложенной силы по времени

 

. (3.58)

 

Передаточная функция демпфера

 

. (3.59)

 

Переходная функция идеального интегрирующего звена при х1 = 1(t) и нулевых начальных условиях

(3.60)

и функция веса

. (3.61)

 

Временные характеристики изображены на рис. 3.20.

 

 

Рис. 3.20. Переходная функция (а) и дельта-функция (б) идеального интегрирующего звена

 

Частотная передаточная функция, её модуль и фаза соответственно равны

w(jw) = k / jw; (3.62)

A(w) = k / w; y = -900 при w > 0; y = +900 при w < 0. (3.63)

Частотные характеристики изображены на рис. 3.21.

 

 

Рис. 3.21. АФЧХ (а), АЧХ (б) и ФЧХ (в) идеального интегрирующего звена

 

Амплитудная характеристика показывает, что звено пропускает сигнал тем сильнее, чем меньше его частота. При ω = 0 модуль . Амплитудно-фазовая характеристика для положительных частот сливается с отрицательной частью оси мнимых.

Построение ЛАХ выполняется по выражению

 

. (3.64)

 

Нетрудно видеть, что ЛАХ представляет собой прямую с отрицательным наклоном 20 дБ/дек, пересекающую ось нуля децибел при частоте среза ω ср = k. ЛФХ представляет собой прямую y = –900, параллельную оси частот.







Дата добавления: 2014-11-12; просмотров: 8802. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия