Безынерционное звено
Безынерционным или идеальным звеном называется звено, которое не только в статике, но и в динамике описывается алгебраическим уравнением . (3.26) Передаточная функция звена равна постоянной величине . (3.27) Безынерционное звено относится к группе позиционных звеньев. Примером такого звена являются делитель напряжения, безынерционный усилитель, редуктор (без учета явления скручивания и люфтов) и т. п. Переходная функция такого звена представляет собой ступенчатую функцию (рис. 3.10, а), то есть при x1 = 1(t), x2 = A(t) = k 1(t).
Рис. 3.10. Переходная функция (а), дельта-функция (б) и АФЧХ (в)
Функция веса представляет собой импульсную функцию, площадь которой равна k (рис. 3.10, б), то есть при , . Амплитудно-фазовая характеристика вырождается в точку, расположенную на вещественной оси на расстоянии k от начала координат (рис. 3.10, в). Логарифмическая амплитудная частотная характеристика представляет собой прямую, параллельную оси частот, проходящую на высоте 20 lg k. Фазовые сдвиги в рассматриваемом звене отсутствуют при любой частоте входного воздействия, то есть y = 0. Поэтому фазовая характеристика совпадает с осью частот и здесь не приводится. Следует подчеркнуть, что безынерционное звено является некоторой идеализацией реальных звеньев. В действительности ни одно звено не в состоянии равномерно пропускать все частоты от 0 до ∞. Обычно к такому виду звена сводится одно из реальных звеньев, например апериодическое или колебательное, если динамическими (переходными) процессами в этом звене можно пренебречь.
|