Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Временные характеристики звеньев





Динамические свойства звена могут определяться по его переходной функции и функции веса.

Переходная функция А(t) звена представляет собой кривую переходного процесса на выходе звена, возникающего при подаче на его входе скачкообразного воздействия при величине скачка, равной единице (рис. 3.3). Такое входное воздействие называется единичной ступенчатой функцией и обозначается .

 

 

Рис. 3.3. Единичная ступенчатая (а) и переходная (б) функции

 

В общем случае, когда входное воздействие представляет собой неединичную функцию , выходная величина будет равна . Ступенчатая функция представляет собой распространенный вид входного воздействия в автоматических системах. К такому виду сводятся, например, мгновенное изменение нагрузки электрического генератора, повышение напряжения на ТЭД при ступенчатом регулировании и т.д.

Функция веса w(t) представляет собой реакцию звена на единичную импульсную функцию, поданную на его вход (рис. 3.4). Единичная импульсная функция или дельта-функция представляет собой первую производную от единичной ступенчатой функции.

 

 

Рис. 3.4. Единичная импульсная (а) и дельта-функции (б)

 

Дельта-функция характерна тем, что она тождественно равна нулю повсюду, кроме точки t = 0, где она стремится к бесконечности. Основное свойство дельта-функции , то есть ее площадь равна единице.

Установим связь между переходной функцией и функцией веса. Рассмотрим входное воздействие звена в виде конечного по высоте и ширине импульса, прикладываемое при t = 0 (рис. 3.5). Такой импульс может быть заменен двумя ступенчатыми равнозначными функциями F1(t) и –F1(t – e), прикладываемыми к входу звена со сдвигом во времени e. Тогда выходная величина звена

. (3.5)

Будем теперь увеличивать высоту импульса, одновременно уменьшая его ширину, но так, чтобы всё время площадь импульса равнялась единице. Умножив и поделив правую часть последнего равенства на длину импульса и перейдя к пределу, получим функцию веса

 

. (3.6)

 

Таким образом, функция веса может быть получена дифференцированием по времени переходной функции.

Если на вход звена поступает неединичная импульсная функция , на выходе звена получим .

Рис. 3.5. Связь между переходной функцией и функцией веса

 

Импульсная входная функция представляет собой также распространенный вид входного воздействия в автоматических системах. К такому виду можно свести, например, кратковременный ток короткого замыкания генератора, отключаемый плавкими предохранителями, кратковременный удар нагрузки на валу двигателя и т. п. В действительности реальные импульсные воздействия на автоматическую систему всегда будут конечными по величине и продолжительности. Однако в случае, если их продолжительность весьма мала по сравнению со временем переходного процесса звена, то с большой степенью точности реальный импульс может быть заменен дельта-функцией с некоторым масштабирующим коэффициентом, что позволяет оценить переходный процесс по виду функции веса.

Функция веса звена связана с его передаточной функцией преобразованием Лапласа, а именно, передаточная функция есть изображение функции веса и связана с ней интегральным уравнением

. (3.7)

В свою очередь переходная функция связана с передаточной функцией преобразованием Карсона, то есть имеет место интегральное уравнение

. (3.8)

Для входного воздействия произвольного вида, прикладываемого в момент t = 0, переходный процесс на выходе звена при нулевых начальных условиях может быть подсчитан на основании интеграла Дюамеля – Карсона по переходной функции

, (3.9)

или по функции веса

, (3.10)

где х1(0) – значение входного воздействия при t = 0; A(0) – значение переходной функции при t = 0; t – вспомогательное время суммирования, изменяющееся в пределах от 0 до рассматриваемого текущего момента времени t.

 







Дата добавления: 2014-11-12; просмотров: 1063. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия