Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ДИНАМИЧЕСКИЕ ЗВЕНЬЯ И ИХ ХАРАКТЕРИСТИКИ





Общие положения

Для создания общей методики расчета различных систем автоматического регулирования удобно ввести понятие динамического звена. Под динамическим звеном понимают устройство любого физического вида и конструктивного содержания, описываемое определённым дифференциальным уравнением.

В соответствии с этим классификация звеньев производится именно по виду дифференциального уравнения. Одним и тем же уравнением могут описываться весьма разнообразные устройства (механические, электрические, гидравлические и т. д.). Для ТАУ это будет один и тот же тип звена.

Обозначим входную величину звена через х1, выходную – через х2, а возмущающее воздействие – через (рис. 3.1).

Статическая характеристика любого звена может быть изображена в виде прямой линии (рис. 3.2), так как пока рассмотрим только линейные, или точнее линеаризованные системы.

В звеньях позиционного или статического типа линейной зависимостью х2 = k х1 связаны выходная и входная величины в установившемся режиме (рис. 3.2, а). Коэффициент пропорциональности между выходной и входной величинами представляет собой коэффициент передачи.

 

 

 

Рис. 3.2. Характеристики позиционных звеньев

 

В звеньях интегрирующего типа линейной зависимостью связаны производная выходной величины и входная величина в установившемся режиме (рис. 3.2, б). В этом случае для установившегося режима будет справедливым равенство , откуда и произошло название этого типа звеньев. Коэффициент пропорциональности k называется коэффициентом передачи звена. В случае, если входная и выходная величины звена имеют одинаковую размерность, коэффициенту передачи соответствует размерность – секунда в минус первой степени (с-1).

В звеньях дифференцирующего типа, в установившемся режиме, линейной зависимостью связаны выходная величина и производная входной (рис. 3.2, в), откуда и произошло название этого типа звеньев. Коэффициент пропорциональности называется коэффициентом передачи звена. Если входная и выходная величины имеют одинаковую размерность, коэффициенту передачи соответствует размерность – секунда (с).

Как уже отмечалось, классификация звеньев производится по виду дифференциального уравнения или, что все равно, по виду передаточной функции звена. Предположим, что звено, изображенное на рис. 3.1, описывается дифференциальным уравнением, представленным в стандартной форме записи

. (3.1)

При нулевых начальных условиях (то есть при t < 0 входная и выходная величины и их производные тождественно равны нулю) и при отсутствии внешнего возмущения () может быть найдена передаточная функция звена как отношение изображений по Лапласу – Карсону выходной и входной величин

, (3.2)

где k1 – коэффициент передачи звена; – постоянная времени.

При известной передаточной функции выходная величина может находиться из выражения

. (3.3)

Аналогичным образом может быть найдена передаточная функция звена по возмущению, если положить при нулевых начальных условиях входное воздействие равным нулю (х1 = 0). Тогда искомая передаточная функция будет равна отношению изображений по Лапласу–Карсону выходной величины и внешнего возмущения

 

. (3.4)

 

В дальнейшем будем рассматривать только передаточную функцию звена, так как именно она даёт связь между входной и выходной величинами, что бывает необходимо знать при использовании звена в автоматической системе.

 







Дата добавления: 2014-11-12; просмотров: 932. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия