Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Неустойчивые звенья





Рассмотренные выше звенья позиционного типа относятся к устойчивым звеньям или звеньям с самовыравниванием. Под самовыравниванием понимается способность звена самопроизвольно приходить к новому установившемуся режиму при ограниченном изменении входной величины или возмущающего воздействия. Термин «самовыравнивание» обычно применяется для звеньев, представляющих собой объекты регулирования.

Существуют звенья, у которых ограниченное изменение входной величины или возмущающего воздействия не вызывает прихода звена к новому установившемуся состоянию, а выходная величина имеет тенденцию неограниченного возрастания во времени. К таким звеньям относятся, например звенья интегрирующего типа. Они были рассмотрены выше.

Существуют звенья, у которых этот процесс выражен еще заметнее. Это объясняется наличием положительных вещественных корней или комплексных корней с положительной вещественной частью в характеристическом уравнении (в знаменателе передаточной функции, приравненном нулю), в результате чего звено относится к категории неустойчивых звеньев. Рассмотрим в качестве примера звено, описываемое дифференциальным уравнением вида

(3.87)

или

. (3.88)

Этому дифференциальному уравнению соответствует передаточная функция

. (3.89)

Переходная функция звена представляет собой показательную функцию с положительным показателем

 

. (3.90)

 

Эта характеристика изображена на рис. 3.33.

Таким звеном может быть, например, асинхронный двухфазный управляемый двигатель, если он имеет механическую характеристику с отрицательным наклоном. На рис. 3.34 изображены возможные варианты механических характеристик двигателя для области малых скоростей.

 

 

Рис. 3.34. Варианты механических характеристик двигателя для малых скоростей

 

График на рис. 3.34, а соответствует положительному наклону механических характеристик. В этом случае скорость двигателя связана с управляющим напряжением передаточной функцией, соответствующей устойчивому апериодическому звену первого порядка

, (3.91)

где – электромеханическая постоянная времени двигателя; k – коэффициент пропорциональности между установившейся скоростью и напряжением.

Это звено обладает положительным самовыравниванием или просто самовыравниванием.

График на рис. 3.34, б соответствует независимости вращающего момента двигателя от скорости его вращения. В этом случае скорость двигателя связана с управляющим напряжением передаточной функцией, соответствующей интегрирующему звену

, (3.92)

где kМ – коэффициент пропорциональности между вращающим моментом и напряжением; J – момент инерции.

Это звено не имеет самовыравнивания.

График на рис. 3.34, в соответствует механическим характеристикам с отрицательным наклоном, то есть характеристикам неустойчивого типа. В этом случае скорость вращения и напряжение связаны между собой передаточной функцией вида (3.89)

, (3.93)

что соответствует отрицательному самовыравниванию.

Существенной особенностью неустойчивых звеньев является наличие больших по сравнению с устойчивыми звеньями фазовых сдвигов. Так, для рассмотренного выше апериодического звена с отрицательным самовыравниванием имеем частотную передаточную функцию

. (3.94)

Модуль её не отличается от модуля частотной передаточной функции апериодического звена с положительным самовыравниванием (3.33)

, (3.95)

а фаза

(3.96)

имеет большое значение по сравнению со вторым уравнением в (3.33).

В связи с этим неустойчивые звенья относят к группе так называемых неминимально-фазовых звеньев. К неминимально-фазовым звеньям относятся также устойчивые звенья, имеющие в числителе передаточной функции (в правой части дифференциального уравнения) вещественные положительные корни или комплексные корни с положительной вещественной частью. Например, звено с передаточной функцией

(3.97)

относится к группе неминимально-фазовых звеньев.

К неустойчивым звеньям относится также ряд других звеньев, имеющих передаточные функции вида

; (3.98)

; (3.99)

; (3.100)

. (3.101)

Наличие в автоматической системе неустойчивых звеньев вызывает некоторые особенности расчета.

 

Контрольные вопросы

1. Дайте понятие типового динамического звена и передаточных функций.

2. Назовите временные характеристики звеньев.

3. Назовите частотные характеристики звеньев.

4. Назовите логарифмические частотные характеристики звеньев.

5. Опишите безинерционное звено и его характеристики.

6. Опишите апериодическое звено первого порядка и его характеристики.

7. Опишите апериодическое звено второго порядка и его характеристики.

8. Опишите идеальное интегрирующее звено и его характеристики.

9. Опишите инерционное интегрирующее звено и его характеристики.

10. Опишите идеальное дифференцирующее звено и его характеристики.

11. Опишите реальное дифференцирующее звено и его характеристики.

12. Опишите неустойчивое звено и его характеристики.

 

 







Дата добавления: 2014-11-12; просмотров: 1546. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Studopedia.info - Студопедия - 2014-2026 год . (0.008 сек.) русская версия | украинская версия