Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ. Учебно-методическое пособие





ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ

УНИВЕРСИТЕТ»

КРИВЫЕ ВТОРОГО ПОРЯДКА

Учебно-методическое пособие

Для студентов I курса дневного и заочного отделений

Физико-математического факультета

Воронеж 2012

УДК 513 (075.8)

 

Составитель:

 

Кандидат физико-математических наук, доцент Н.А. Заварзина

 

 

Кривые второго порядка

Лекция №1

Эллипс

1. Определение эллипса и его уравнение

Определение. Эллипсом называется множество всех точек плоскости, для каждой из которых сумма расстояний до двух фиксированных точек плоскости F1 и F2 есть величина постоянная, равная 2a > ǀF1F2ǀ=2c.

Точки F1 и F2 называются фокусами эллипса, а ; F1F2│= 2с ─ фокальным расстоянием.

Пусть на плоскости даны две точки F1 и F2. Для того чтобы составить уравнение эллипса на плоскости введём ортонормированную систему координат, начало которой поместим с середину отрезка [F1F2]. Ось Ох расположим таким образом, чтобы точки F1 и F2 принадлежали этой оси.

Рис.1.

В этом случае фокусы эллипса принимают следующие координаты F1(c;0) и F2(-c;0). (см. Рис.1.) Пусть М(х;у) ─ произвольная точка эллипса. Тогда, по определению, │МF1│+ │МF2│ = 2a. (1)

По формуле вычисления расстояния между точками имеем: , . Таким образом из (1) =>

. Запишем полученное выражение в виде и возведём в квадрат. В результате, после приведения подобных членов, получаем . Для того чтобы освободиться от корня возведём последнее выражение в квадрат. В результате после элементарных преобразований имеем: . (2)

Учитывая, что > обозначим (3)

и запишем (2) виде: . После деления полученного уравнения на получаем, что если точка М(х;у) принадлежит эллипсу, то её координаты удовлетворяют уравнению

 

(4)

Покажем теперь, что если координаты некоторой точки М111) удовлетворяют уравнению (4), то точка М1 принадлежит эллипсу.

Пусть для точки М111) справедливо равенство (5)

Из (5) следует: (6)

Вычислим

=> .

Заметим, что величина стоящая под знаком модуля положительна не только при < 0, но и при > 0 так как с < и из (6) => .

Аналогично, если провести подобные преобразования для , получим . => => точка М1 принадлежит эллипсу.

Таким образом, уравнение (4) является уравнением эллипса, которое называется каноническим уравнением эллипса.

[MF1] ─ называется первым фокальным радиусом эллипса; .

[MF2] ─ называется вторым фокальным радиусом эллипса; .

Заметим, что если F1= F2, то с = 0 и => => окружность частный случай эллипса.







Дата добавления: 2015-10-19; просмотров: 467. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия