Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ. Учебно-методическое пособие





ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ

УНИВЕРСИТЕТ»

КРИВЫЕ ВТОРОГО ПОРЯДКА

Учебно-методическое пособие

Для студентов I курса дневного и заочного отделений

Физико-математического факультета

Воронеж 2012

УДК 513 (075.8)

 

Составитель:

 

Кандидат физико-математических наук, доцент Н.А. Заварзина

 

 

Кривые второго порядка

Лекция №1

Эллипс

1. Определение эллипса и его уравнение

Определение. Эллипсом называется множество всех точек плоскости, для каждой из которых сумма расстояний до двух фиксированных точек плоскости F1 и F2 есть величина постоянная, равная 2a > ǀF1F2ǀ=2c.

Точки F1 и F2 называются фокусами эллипса, а ; F1F2│= 2с ─ фокальным расстоянием.

Пусть на плоскости даны две точки F1 и F2. Для того чтобы составить уравнение эллипса на плоскости введём ортонормированную систему координат, начало которой поместим с середину отрезка [F1F2]. Ось Ох расположим таким образом, чтобы точки F1 и F2 принадлежали этой оси.

Рис.1.

В этом случае фокусы эллипса принимают следующие координаты F1(c;0) и F2(-c;0). (см. Рис.1.) Пусть М(х;у) ─ произвольная точка эллипса. Тогда, по определению, │МF1│+ │МF2│ = 2a. (1)

По формуле вычисления расстояния между точками имеем: , . Таким образом из (1) =>

. Запишем полученное выражение в виде и возведём в квадрат. В результате, после приведения подобных членов, получаем . Для того чтобы освободиться от корня возведём последнее выражение в квадрат. В результате после элементарных преобразований имеем: . (2)

Учитывая, что > обозначим (3)

и запишем (2) виде: . После деления полученного уравнения на получаем, что если точка М(х;у) принадлежит эллипсу, то её координаты удовлетворяют уравнению

 

(4)

Покажем теперь, что если координаты некоторой точки М111) удовлетворяют уравнению (4), то точка М1 принадлежит эллипсу.

Пусть для точки М111) справедливо равенство (5)

Из (5) следует: (6)

Вычислим

=> .

Заметим, что величина стоящая под знаком модуля положительна не только при < 0, но и при > 0 так как с < и из (6) => .

Аналогично, если провести подобные преобразования для , получим . => => точка М1 принадлежит эллипсу.

Таким образом, уравнение (4) является уравнением эллипса, которое называется каноническим уравнением эллипса.

[MF1] ─ называется первым фокальным радиусом эллипса; .

[MF2] ─ называется вторым фокальным радиусом эллипса; .

Заметим, что если F1= F2, то с = 0 и => => окружность частный случай эллипса.







Дата добавления: 2015-10-19; просмотров: 467. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия