Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение задач





Задача №1. Составить каноническое уравнение эллипса расстояние между фокусами, которого равно 16, а большая ось ─ равна 20.

Решение.

Если расстояние между фокусами равно 16, то и так как большая ось равна 20, то . Для того чтобы составить уравнение эллипса необходимо определить значение его малой полуоси . Воспользуемся следующим соотношением => = > b = 6.

Следовательно, уравнение эллипса имеет вид .

 

Задача №2. Составить уравнение эллипса, если эксцентриситет равен ¾ и эллипс проходит через точку А(1;1).

Решение.

Для записи канонического уравнения эллипса необходимо знать значения его большой и малой полуосей.

Так как , то .

С другой стороны точка А(1;1) принадлежит эллипсу

. => .

Так как , то .

Запишем каноническое уравнение эллипса .

 

Задача №3. Найти длину перпендикуляра, восстановленного из фокуса эллипса к большой оси до пересечения с эллипсом.

Решение.

Восстановим из фокуса F

перпендикуляр до

пересечения с эллипсом

в точке М. По условию

задачи необходимо найти

длину [FM]. Координаты фокуса F(с;0) определяются по формуле . => Прямая (FM) имеет уравнение: х = 4.

Для нахождения координат точки М необходимо решить систему уравнений

=>

=> . Очевидно, что │FM│= .

Задача №4. Составить каноническое уравнение гиперболы, если её действительная ось равна 2 и расстояние между фокусами равно .

Решение.

Уравнение гиперболы имеет вид . По условию задачи дано и . Известно, что .

Таким образом, уравнение гиперболы имеет вид .

Задача №5. Составить каноническое уравнение гиперболы, если её эксцентриситет равен 13/5 и гипербола проходит через точку .

Решение.

Для составления канонического уравнения гиперболы необходимо знать значения её действительной и мнимой осей.

По условию задачи дано значение

. С другой стороны так как точка М принадлежит гиперболе, то её координаты удовлетворяют уравнению: . Таким образом для нахождения значений параметров и , неох одимо решить систему уравнений => .

Уравнение гиперболы имеет вид

Задача №6. Составить каноническое уравнение эллипса, если его фокусы совпадают с вершинами гиперболы , а вершины совпадают с фокусами этой гиперболы.

Решение.

Так как вершины эллипса совпадают с фокусами гиперболы, то . С другой стороны фокусы эллипса совпадают с вершинами гиперболы => . Так как для эллипса , то . Таким образом уравнение эллипса имеет вид .

Задача №7. На параболе найти точку, расстояние от которой до директрисы равно 4.

Решение.

Каноническое уравнение параболы имеет вид , где р ─

параметр. Уравнение директрисы в общем случае записывается следующим образом . По условию задачи р = 4 и, следовательно уравнение директрисы х + 2 = 0. Если точка М принадлежит параболе, ео она имеет следующие координаты М(х; ). Так как расстояние от точки М до директрисы равно 4, то по формуле расстояния от точки до прямой для определения значения х, получаем уравнение: . Из уравнения параболы следует, что х > 0, поэтому => х = 2 => М(2; ).

Задача №8. Составить уравнение параболы с вершиной в начале координат, симметричной относительно оси (Оу) и отсекающей на прямой у = х хорду длины .

Решение.

Пусть парабола имеет уравнение . С прямой у = х она имеет две точки пересечения: М1(0;0) и М2(х; 2рх). Длина хорды, очевидно равна

│М1М2│= │2рх│ = . Так как р > 0, то . Искомое уравнение параболы имеет вид .

Задача №9. Парабола отсекает от прямой, проходящей через начало координат, хорду длина которой равна Написать уравнение этой прямой.

Решение.

Пусть парабола имеет уравнение . С прямой она имеет две точки пересечения: М1(0;0) и . Длина хорды, очевидно равна Так как, по условию задачи р = 1 и длина хорды равна 3/4, то для определения параметра получаем уравнение => => => =>

=> Таким образом существуют две прямые и , от которых парабола отсекает хорду длиной 3/4.

Задача №10. На параболе найти точку, расстояние от которой до прямой равно 2.

Решение.

Если точка М(х;у) лежит на параболе , то она имеет координаты .

Из формулы расстояния от точки до прямой на плоскости следует . => а) => . Таким образом точки М1(0;0) и М2(18;-24) параболы удалены от прямой на расстояние, равное 2.

б) ─ это уравнение не имеет действительных корней.

Литература

1. Атанасян Л.С, Базырев В.Т. Геометрия. В 2-х частях. Ч 1 Учебное пособие для студентов физико-математических факультетов пединститутов – М.: Просвещение, 1986.-336 с.

2. Атанасян Л.С., Цаленко М.М. Задачник практикум по геометрии. М.: Просвещение, 1994. – 192 с.

3. Базылев В.Т. и др. Геометрия. Учебное пособие для студентов 1 курса физико-математических факультетов пединститутов М.: Просвещение, 1974.

4. Сборник задач по геометрии/ С.А. Франгулов, П.Н. Совертков, А.А. Фадеева, Т.П. Ходот – М.: Просвещение, 2002 – 238 с.

 







Дата добавления: 2015-10-19; просмотров: 1830. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия