Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методика составления уравнений состояния





Эта методика включает в себя следующие основные этапы:

1. Составляется ориентированный граф схемы (см. рис. 4,б), на котором выделяется дерево, охватывающее все конденсаторы и источники напряжения (ЭДС). Резисторы включаются в дерево по необходимости: для охвата деревом всех узлов. В ветви связи включаются катушки индуктивности, источники тока и оставшиеся резисторы.

2. Осуществляется нумерация ветвей графа (и элементов в схеме), проводимая в следующей последовательности: первыми нумеруются участки графа (схемы) с конденсаторами, затем резисторами, включенными в дерево, следующими нумеруются ветви связи с резисторами и, наконец, ветви с индуктивными элементами (см. рис. 4,б).

3. Составляется таблица, описывающая соединение элементов в цепи. В первой строке таблицы (см. табл. 1) перечисляются емкостные и резистивные элементы дерева, а также источники напряжения (ЭДС). В первом столбце перечисляются резистивные и индуктивные элементы ветвей связи, а также источники тока.

 

Таблица 1. Таблица соединений

      u
  -1    
       
J      

Процедура заполнения таблицы заключается в поочередном мысленном замыкании ветвей дерева с помощью ветвей связи до получения контура с последующим обходом последнего согласно ориентации соответствующей ветви связи. Со знаком «+» записываются ветви графа, ориентация которых совпадает с направлением обхода контура, и со знаком «-» ветви, имеющие противоположную ориентацию.

Осуществляется расписывание таблицы по столбцам и по строкам. В первом случае получаются уравнения по первому закону Кирхгофа, во втором – по второму.

В рассматриваемом случае (равенство тривиально)

,

откуда в соответствии с нумерацией токов в исходной цепи

.

При расписывании таблицы соединений по строкам напряжения на пассивных элементах необходимо брать со знаками, противоположными табличным:

(7)

Эти уравнения совпадают соответственно с соотношениями (6) и (5).

Из (7) непосредственно вытекает

.

Таким образом, формализованным способом получены уравнения, аналогичные составленным выше с использованием законов Кирхгофа.

Литература

  1. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
  2. Матханов П.Н. Основы анализа электрических цепей. Линейные цепи.: Учеб. для электротехн. радиотехн. спец. вузов. 3-е изд., перераб. и доп. –М.: Высш. шк., 1990. –400с.

Контрольные вопросы и задачи

  1. Какой принцип лежит в основе метода расчета переходных процессов с использованием интеграла Дюамеля, и для каких цепей может быть использован данный метод?
  2. В каких случаях целесообразно использовать метод расчета с использованием интеграла Дюамеля?
  3. В цепи на рис. 3 при напряжение на входе цепи мгновенно спадает до нуля. Определить ток в цепи.

Ответ: при ; при .

  1. Какие требования и почему выдвигаются к уравнениям состояния?
  2. Что включает в себя система уравнений при расчете переходного процесса в цепи методом переменных состояния?
  3. Перечислите основные этапы методики составления уравнений состояния.
  4. Записать матрицы А и В для цепи на рис. 5, если , , , , , .

Ответ: А ;

 

В

 

Лекция N 30. Нелинейные цепи.

 

Нелинейными называются цепи, в состав которых входит хотя бы один нелинейный элемент. Нелинейными называются элементы, параметры которых зависят от величины и (или) направления связанных с этими элементами переменных (напряжения, тока, магнитного потока, заряда, температуры, светового потока и др.). Нелинейные элементы описываются нелинейными характеристиками, которые не имеют строгого аналитического выражения, определяются экспериментально и задаются таблично или графиками. Нелинейные элементы можно разделить надвух– и многополюсные.Последние содержат три (различные полупроводниковые и электронные триоды) и более (магнитные усилители, многообмоточные трансформаторы, тетроды, пентоды и др.) полюсов, с помощью которых они подсоединяются к электрической цепи. Характерной особенностью многополюсных элементов является то, что в общем случае их свойства определяются семейством характеристик, представляющих зависимости выходных характеристик от входных переменных и наоборот: входные характеристики строят для ряда фиксированных значений одного из выходных параметров, выходные – для ряда фиксированных значений одного из входных. По другому признаку классификации нелинейные элементы можно разделить на инерционныеи безынерционные.Инерционными называются элементы, характеристики которых зависят от скорости изменения переменных. Для таких элементов статические характеристики, определяющие зависимость между действующими значениями переменных, отличаются от динамических характеристик, устанавливающих взаимосвязь между мгновенными значениями переменных. Безынерционными называются элементы, характеристики которых не зависят от скорости изменения переменных. Для таких элементов статические и динамические характеристики совпадают. Понятия инерционных и безынерционных элементов относительны: элемент может рассматриваться как безынерционный в допустимом (ограниченном сверху) диапазоне частот, при выходе за пределы которого он переходит в разряд инерционных. В зависимости от вида характеристик различают нелинейные элементы с симметричными и несимметричными характеристиками. Симметричной называется характеристика, не зависящая от направления определяющих ее величин, т.е. имеющая симметрию относительно начала системы координат: . Для несимметричной характеристики это условие не выполняется, т.е. . Наличие у нелинейного элемента симметричной характеристики позволяет в целом ряде случаев упростить анализ схемы, осуществляя его в пределах одного квадранта. По типу характеристики можно также разделить все нелинейные элементы на элементы с однозначной и неоднозначной характеристиками. Однозначной называется характеристика , у которой каждому значению х соответствует единственное значение y и наоборот. В случае неоднозначной характеристики каким-то значениям х может соответствовать два или более значения y или наоборот. У нелинейных резисторов неоднозначность характеристики обычно связана с наличием падающего участка, для которого , а у нелинейных индуктивных и емкостных элементов – с гистерезисом. Наконец, все нелинейные элементы можно разделить на управляемыеи неуправляемые.В отличие от неуправляемых управляемые нелинейные элементы (обычно трех- и многополюсники) содержат управляющие каналы, изменяя напряжение, ток, световой поток и др. в которых, изменяют их основные характеристики: вольт-амперную, вебер-амперную или кулон-вольтную.   Нелинейные электрические цепи постоянного тока Нелинейные свойства таких цепей определяет наличие в них нелинейных резисторов. В связи с отсутствием у нелинейных резисторов прямой пропорциональности между напряжением и током их нельзя охарактеризовать одним параметром (одним значением ). Соотношение между этими величинами в общем случае зависит не только от их мгновенных значений, но и от производных и интегралов по времени.   Параметры нелинейных резисторов В зависимости от условий работы нелинейного резистора и характера задачи различают статическое, дифференциальное и динамическое сопротивления. Если нелинейный элемент является безынерционным, то он характеризуется первыми двумя из перечисленных параметров. Статическое сопротивлениеравно отношению напряжения на резистивном элементе к протекающему через него току. В частности для точки 1 ВАХ на рис. 1 . Поддифференциальным сопротивлением понимается отношение бесконечно малого приращения напряжения к соответствующему приращению тока . Следует отметить, что у неуправляемого нелинейного резистора всегда, а может принимать и отрицательные значения (участок 2-3 ВАХ на рис. 1). В случае инерционного нелинейного резистора вводится понятие динамического сопротивления , определяемого по динамической ВАХ. В зависимости от скорости изменения переменной, например тока, может меняться не только величина, но и знак .   Методы расчета нелинейных электрических цепей постоянного тока Электрическое состояние нелинейных цепей описывается на основании законов Кирхгофа, которые имеют общий характер. При этом следует помнить, что для нелинейных цепей принцип наложения неприменим.В этой связи методы расчета, разработанные для линейных схем на основе законов Кирхгофа и принципа наложения, в общем случае не распространяются на нелинейные цепи. Общих методов расчета нелинейных цепей не существует. Известные приемы и способы имеют различные возможности и области применения. В общем случае при анализе нелинейной цепи описывающая ее система нелинейных уравнений может быть решена следующими методами:
  • графическими;
  • аналитическими;
  • графо-аналитическими;
  • итерационными.
  Графические методы расчета При использовании этих методов задача решается путем графических построений на плоскости. При этом характеристики всех ветвей цепи следует записать в функции одного общего аргумента. Благодаря этому система уравнений сводится к одному нелинейному уравнению с одним неизвестным. Формально при расчете различают цепи с последовательным, параллельным и смешанным соединениями. а) Цепи с последовательным соединением резистивных элементов. При последовательном соединении нелинейных резисторов в качестве общего аргумента принимается ток, протекающий через последовательно соединенные элементы. Расчет проводится в следующей последовательности. По заданным ВАХ отдельных резисторов в системе декартовых координат строится результирующая зависимость . Затем на оси напряжений откладывается точка, соответствующая в выбранном масштабе заданной величине напряжения на входе цепи, из которой восстанавливается перпендикуляр до пересечения с зависимостью . Из точки пересечения перпендикуляра с кривой опускается ортогональ на ось токов – полученная точка соответствует искомому току в цепи, по найденному значению которого с использованием зависимостей определяются напряжения на отдельных резистивных элементах. Применение указанной методики иллюстрируют графические построения на рис. 2,б, соответствующие цепи на рис. 2,а. Графическое решение для последовательной нелинейной цепи с двумя резистивными элементами может быть проведено и другим методом –методом пересечений.В этом случае один из нелинейных резисторов, например, с ВАХ на рис.2,а, считается внутренним сопротивлением источника с ЭДС Е, а другой – нагрузкой. Тогда на основании соотношения точка а (см. рис. 3) пересечения кривых и определяет режим работы цепи. Кривая строится путем вычитания абсцисс ВАХ из ЭДС Е для различных значений тока. Использование данного метода наиболее рационально при последовательном соединении линейного и нелинейного резисторов. В этом случае линейный резистор принимается за внутреннее сопротивление источника, и линейная ВАХ последнего строится по двум точкам. б) Цепи с параллельным соединением резистивных элементов. При параллельном соединении нелинейных резисторов в качестве общего аргумента принимается напряжение, приложенное к параллельно соединенным элементам. Расчет проводится в следующей последовательности. По заданным ВАХ отдельных резисторов в системе декартовых координат строится результирующая зависимость . Затем на оси токов откладывается точка, соответствующая в выбранном масштабе заданной величине тока источника на входе цепи (при наличии на входе цепи источника напряжения задача решается сразу путем восстановления перпендикуляра из точки, соответствующей заданному напряжению источника, до пересечения с ВАХ ), из которой восстанавливается перпендикуляр до пересечения с зависимостью . Из точки пересечения перпендикуляра с кривой опускается ортогональ на ось напряжений – полученная точка соответствует напряжению на нелинейных резисторах, по найденному значению которого с использованием зависимостей определяются токи в ветвях с отдельными резистивными элементами. Использование данной методики иллюстрируют графические построения на рис. 4,б, соответствующие цепи на рис. 4,а. в) Цепи с последовательно-параллельным (смешанным) соединением резистивных элементов. 1. Расчет таких цепей производится в следующей последовательности: Исходная схема сводится к цепи с последовательным соединением резисторов, для чего строится результирующая ВАХ параллельно соединенных элементов, как это показано в пункте б). 2. Проводится расчет полученной схемы с последовательным соединением резистивных элементов (см. пункт а), на основании которого затем определяются токи в исходных параллельных ветвях.   Метод двух узлов Для цепей, содержащих два узла или сводящихся к таковым, можно применять метод двух узлов. При полностью графическом способе реализации метода он заключается в следующем: Строятся графики зависимостей токов во всех i-х ветвях в функции общей величины – напряжения между узлами m и n, для чего каждая из исходных кривых смещается вдоль оси напряжений параллельно самой себе, чтобы ее начало находилось в точке, соответствующей ЭДС в i-й ветви, а затем зеркально отражается относительно перпендикуляра, восстановленного в этой точке. Определяется, в какой точке графически реализуется первый закон Кирхгофа . Соответствующие данной точке токи являются решением задачи. Метод двух узлов может быть реализован и в другом варианте, отличающемся от изложенного выше меньшим числом графических построений. В качестве примера рассмотрим цепь на рис. 5. Для нее выражаем напряжения на резистивных элементах в функции :
; (1)

 

; (2)

 

. (3)

Далее задаемся током, протекающим через один из резисторов, например во второй ветви , и рассчитываем , а затем по с использованием (1) и (3) находим и и по зависимостям и - соответствующие им токи и и т.д. Результаты вычислений сводим в табл. 1, в последней колонке которой определяем сумму токов

.

 

Таблица 1. Таблица результатов расчета методом двух узлов

             

Алгебраическая сумма токов в соответствии с первым законом Кирхгофа должна равнять нулю, поэтому получающаяся в последней колонке табл. 1 величина указывает, каким значением следует задаваться на следующем шаге.

В осях строим кривую зависимости и по точке ее пересечения с осью напряжений определяем напряжение между точками m и n. Для найденного значения по (1)…(3) рассчитываем напряжения на резисторах, после чего по заданным зависимостям определяем токи в ветвях схемы.

 

Литература

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
  3. Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.2. Жуховицкий Б.Я., Негневицкий И.Б. Линейные электрические цепи (продолжение). Нелинейные цепи. –М.: Энергия- 1972. –200с.

Контрольные вопросы и задачи

  1. Почему метод наложения неприменим к нелинейным цепям?
  2. Какие параметры характеризуют нелинейный резистор?
  3. Почему статическое сопротивление всегда больше нуля, а дифференциальное и динамическое могут иметь любой знак?
  4. Какие методы используют для анализа нелинейных резистивных цепей постоянного тока?
  5. Какая последовательность расчета графическим методом нелинейной цепи с последовательным соединением резисторов?
  6. Какая последовательность расчета графическим методом нелинейной цепи с параллельным соединением резисторов?
  7. Какой алгоритм анализа цепи со смешанным соединением нелинейных резисторов?
  8. В чем сущность метода двух узлов?
  9. В цепи на рис. 2,а ВАХ нелинейных резисторов и , где напряжение – в вольтах, а ток – в амперах; . Графическим методом определить напряжения на резисторах.

Ответ: .

  1. В цепи на рис. 4,а ВАХ нелинейных резисторов и , где ток – в амперах, а напряжение – в вольтах; . Графическим методом определить токи и .

Ответ: .

  1. В цепи на рис. 5 , где ток – в амперах, а напряжение – в вольтах; третий резистор линейный с . Определить токи в ветвях методом двух узлов, если .

Ответ: .

Лекция N 31. Расчет нелинейных цепей методом эквивалентного генератора.

 

Если в сложной электрической цепи имеется одна ветвь с нелинейным резистором, то определение тока в ней можно проводить на основе теоремы об активном двухполюснике (методом эквивалентного генератора). Идея решения заключается в следующем. Ветвь, содержащая нелинейный резистор, выделяется из исходной цепи, а вся остальная, уже линейная, схема представляется в виде активного двухполюсника (АД). Согласно теореме об АД схему линейного АД по отношению к зажимам 1-2 выделенной ветви (см. рис. 1,а) можно представить эквивалентным генератором (см. рис. 1,б) с ЭДС, равной напряжению на зажимах 1-2 при разомкнутой ветви с нелинейным резистором, и внутренним сопротивлением, равным входному сопротивлению линейного двухполюсника. Последняя схема рассчитывается, например, графическим методом как цепь с последовательным соединением элементов. Если необходимо также найти токи в линейной части исходной цепи, то после расчета нелинейной схемы на рис. 1,б в соответствии с теоремой о компенсации нелинейный резистор заменяется источником ЭДС или тока, после чего проводится анализ полученной линейной цепи любым известным методом.   Аналитические методы расчета Исследования общих свойств нелинейных цепей удобно осуществлять на основе математического анализа, базирующегося на аналитическом выражении характеристик нелинейных элементов, т.е. их аппроксимации. На выбор аналитического метода влияют условия поставленной задачи, а также характер возможного перемещения рабочей точки по характеристике нелинейного элемента: по всей характеристике или в ее относительно небольшой области. К аналитическим методам относятся:
  • метод аналитической аппроксимации;
  • метод кусочно-линейной аппроксимации;
  • метод линеаризации.
Метод аналитической аппроксимацииоснован на замене характеристики (или ее участка) нелинейного элемента общим аналитическим выражением. Применяются следующие виды аналитической аппроксимации:
  • степенным многочленом (см. рис. 2,а);
  • трансцендентными (экспоненциальными, гиперболическими и др.) функциями (см. рис. 2,б).
Выбор коэффициентов (а,b,c,…) осуществляется исходя из наибольшего соответствия аналитического выражения рабочему участку нелинейной характеристики. При этом выбираются наиболее характерные точки, через которые должна пройти аналитическая кривая. Число точек равно числу коэффициентов в аналитическом выражении, что позволяет однозначно определить последнее. Необходимо помнить, что при получении нескольких корней нелинейного уравнения они должны быть проверены на удовлетворение задаче. Пусть, например, в цепи, состоящей из последовательно соединенных линейного R и нелинейного резисторов, ВАХ последнего может быть аппроксимирована выражением . Определить ток в цепи, если источник ЭДС Е обеспечивает режим работы цепи в первом квадранте. В соответствии со вторым законом Кирхгофа для данной цепи имеет место уравнение или . Корни уравнения . Решением задачи является , поскольку второе решение не удовлетворяет условиям исходя из физических соображений. Метод кусочно-линейной аппроксимацииоснован на представлении характеристики нелинейного элемента отрезками прямых линий (см. рис. 3), в результате чего нелинейная цепь может быть описана линейными уравнениями с постоянными (в пределах каждого отрезка) коэффициентами. При наличии в цепи двух и более нелинейных резисторов реализация метода затруднена, так как в общем случае изначально неизвестно, на каких участках ломаных кривых находятся рабочие точки. Кусочно-линейная аппроксимация может быть реализована методом секционных кусочно-линейных функций,позволяющим описать ломаную кривую общим аналитическим выражением. Например, для кривой, представленной на рис. 4 и определяемой коэффициентами и характеризующими наклон ее отдельных прямолинейных участков, и параметрами , характеризующими координаты точек, где значения функции изменяются скачками, данное выражение будет иметь вид Здесь два первых слагаемых в правой части определяют первый наклонный участок аппроксимируемой кривой; три первых слагаемых - первый наклонный участок и участок первого скачка; четыре первых слагаемых - первый и второй наклонные участки с учетом участка первого скачка и т.д. В общем случае аппроксимирующее выражение по методу секционных кусочно - линейных функций имеет вид Метод линеаризацииприменим для анализа нелинейных цепей при малых отклонениях рабочей точки Р (см. рис. 5) от исходного состояния. В окрестности рабочей точки (см. рис. 5) , где (закон Ома для малых приращений); -дифференциальное сопротивление. Идея метода заключается в замене нелинейного резистора линейным с сопротивлением, равным дифференциальному в заданной (или предполагаемой) рабочей точке, и либо последовательно включенным с ним источником ЭДС, либо параллельно включенным источником тока. Таким образом, линеаризованной ВАХ (см. прямую на рис. 5) соответствует последовательная (рис. 6,а) или параллельная (рис. 6,б) схема замещения нелинейного резистора. Если исходный режим определен и требуется рассчитать лишь приращения токов и (или) напряжений, обусловленные изменением напряжения или тока источника, целесообразно использовать эквивалентные схемы для приращений,получаемые на основании законов Кирхгофа для малых приращений: -первый закон Кирхгофа: ; -второй закон Кирхгофа: . При составлении схемы для приращений: 1) все ЭДС и токи источников заменяются их приращениями; 2) нелинейные резисторы заменяются линейными с сопротивлениями, равными дифференциальным в рабочих точках. Необходимо помнить, что полная величина какого-либо тока или напряжения в цепи равна алгебраической сумме исходного значения переменной и ее приращения, рассчитанного методом линеаризации. Если исходный режим работы нелинейного резистора неизвестен, то следует задаться рабочей точкой на его ВАХ и, осуществив соответствующую линеаризацию, произвести расчет, по окончании которого необходимо проверить, соответствуют ли его результаты выбранной точке. В случае их несовпадения линеаризованный участок уточняется, расчет повторяется и так до получения требуемой сходимости   Итерационные методы расчета Решение нелинейного уравнения (системы нелинейных уравнений), описывающего (описывающих) состояние электрической цепи, может быть реализовано приближенными численными методами. Решение находится следующим образом: на основе первой, достаточно грубой, оценки определяется начальное значение корня (корней), после чего производится уточнение по выбранному алгоритму до вхождения в область заданной погрешности. Наиболее широкое применение в электротехнике для численного расчета нелинейных резистивных цепей получили метод простой итерации и метод Ньютона-Рафсона, основные сведения о которых приведены в табл. 1. Таблица 1. Итерационные методы расчета
Последователь-ность расчета Геометрическая иллюстрация алгоритма Условие сходимости итерации Примечание
Метод простой итерации 1.Исходное нелинейное уравнение электрической цепи , где -искомая переменная, представляется в виде . 2. Производится расчет по алгоритму где - шаг итерации.   Здесь - заданная погрешность На интервале между приближенным и точным значениями корня должно выполняться неравенство 1.Начальное приближение обычно находится из уравнения при пренебрежении в нем нелинейными членами. 2. Метод распространим на систему нелинейных уравнений n-го порядка. Например, при решении системы 2-го порядка итерационные формулы имеют вид ; . 3. При решении системы уравнений сходимость обычно проверяется в процессе итерации.  
Метод Ньютона- -Рафсона 1. На основании исходного нелинейного уравнения электрической цепи , где -искомая переменная, записывается итерационная формула где - шаг итерации. 2.По полученной формуле проводится итерационный расчет Здесь - заданная погрешность На интервале между приближенным и точным значениями корня должны выполняться неравенства Примечания п. 1,2 и 3 к методу простой итерации распространимы на метод Ньютона-Рафсона. При этом при решении системы 2-го порядка итерационные формулы имеют вид где

 

Литература

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
  3. Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.2. Жуховицкий Б.Я., Негневицкий И.Б. Линейные электрические цепи (продолжение). Нелинейные цепи. –М.: Энергия- 1972. –200с.
  4. Матханов П.Н. Основы анализа электрических цепей. Нелинейные цепи.: Учеб. для студ. электротехн. спец. вузов. 2-е изд., переработ. и доп. –М.: Высш. шк., 1986. –352с.
  5. Чуа Л.О., Лин Пен-Мин. Машинный анализ электронных схем: алгоритмы и вычислительные методы: Пер. с англ. –М.: Энергия, 1980. – 640 с.
  6. Сборник задач и упражнений по теоретически основам электротехники: Учеб. пособие для вузов /Под ред. проф. П.А.Ионкина. –М.: Энергоиздат, 1982. –768 с.

Контрольные вопросы и задачи

  1. Как рассчитываются цепи с одним нелинейным резистором и произвольным числом линейных?
  2. В чем преимущества и недостатки аналитических методов расчета по сравнению с графическими?
  3. Какие аналитические методы используются для расчета нелинейных резистивных цепей постоянного тока?
  4. В чем сущность метода линеаризации? Для решения каких двух типов задач он применяется?
  5. Что такое эквивалентные схемы для приращений? Как они составляются?
  6. Какова последовательность расчета нелинейных цепей итерационными методами?
  7. В диагонали моста находится нелинейный резистор, ВАХ которого аппроксимирована выражением , где . Линейные сопротивления противоположных плеч моста попарно равны: ; . Определить мощность, рассеиваемую нелинейным резистором, если схема питается от источника с ЭДС .

Ответ: Р=2 Вт.

  1. Определить ток в цепи, состоящей из последовательно соединенных линейного и нелинейного резисторов, если кривая ВАХ последнего проходит через точки с координатами (15 В; 1,425 А) и (5 В; 0,325 А) и аппроксимирована выражением вида . ЭДС на входе цепи .

Ответ: .

  1. В схеме предыдущей задачи ВАХ нелинейного резистора описывается выражением (ток – в амперах, напряжение – в вольтах) ; ; . Определить напряжение на нелинейном резисторе и ток в нем методом Ньютона-Рафсона.

Ответ: ; .

  1. В цепи на рис. 1,б , . ВАХ нелинейного резистора аппроксимирована двумя прямолинейными отрезками, первый из которых проходит через точки с координатами (0 В; 0 А) и (9 В; 2 А), а второй – через точки с координатами (9 В; 2 А) и (12 В; 6 А). Определить ток в цепи.

Ответ: .

Лекция N 32. Нелинейные магнитные цепи при постоянных потоках. Основные понятия и законы магнитных цепей.

 

При решении электротехнических задач все вещества в магнитном отношении делятся на две группы:
  • ферромагнитные(относительная магнитная проницаемость );
  • неферромагнитные(относительная магнитная проницаемость ).
Для концентрации магнитного поля и придания ему желаемой конфигурации отдельные части электротехнических устройств выполняются из ферромагнитных материалов. Эти части называют магнитопроводами или сердечниками.Магнитный поток создается токами, протекающими по обмоткам электротехнических устройств, реже – постоянными магнитами. Совокупность устройств, содержащих ферромагнитные тела и образующих замкнутую цепь, вдоль которой замыкаются линии магнитной индукции, называют магнитной цепью. Магнитное поле характеризуется тремя векторными величинами, которые приведены в табл. 1.   Таблица 1. Векторные величины, характеризующие магнитное поле
Наименование Обозначение Единицы измерения Определение
Вектор магнитной индукции Тл (тесла) Векторная величина, характеризующая силовое действие магнитного поля на ток по закону Ампера
Вектор намагниченности А/м Магнитный момент единицы объема вещества
Вектор напряженности магнитного поля А/м , где Гн/м- магнитная постоянная

 

Основные скалярные величины, используемые при расчете магнитных цепей, приведены в табл. 2.

Таблица 2. Основные скалярные величины, характеризующие магнитную цепь

Наименование Обозначение Единица измерения Определение
Магнитный поток Вб (вебер) Поток вектора магнитной индукции через поперечное сечение магнитопровода
Магнитодвижущая (намагничивающая) сила МДС (НС) A где -ток в обмотке, -число витков обмотки
Магнитное напряжение А Линейный интеграл от напряженности магнитного поля , где и -граничные точки участка магнитной цепи, для которого определяется

 







Дата добавления: 2015-10-19; просмотров: 1395. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия