Тема 5: Шар
О геометрических свойствах шара и его поверхности – сферы – написаны целые книги. Некоторые из этих свойств были известны еще древнегреческим геометрам, а некоторые найдены совсем недавно. Эти свойства (вместе с законом естествознания) объясняют, почему, например, форму шара имеют небесные тела и икринки рыб, почему в форме шара делают батискафы и футбольные мячи, почему так расположены в технике шарикоподшипники и так далее. Из всех свойств шара мы рассмотрим самые простые.
Фигура, ограниченная сферой называется шаром. Радиус сферы называется также радиусом шара. Шар с центром в точке О и радиусом R представляет собой геометрическую фигуру, состоящую из всех точек пространства, удаленных от данной точки на расстояние, не превосходящее R. Прямая, соединяющая две точки поверхности шара и проходящая через его центр называется диаметром. Все радиусы одного шара равны между собой; всякий диаметр равен двум радиусам. Два шара одинакового радиуса равны, потому что при вложении они совмещаются. Площадь сферы радиуса R: S = 4 П R2. Площадь сферического сегмента радиуса R и высотой H: S = 2 П R H. Объем шара: V = 4/3 П R3. Учащимся можно предложить следующие задачи. Задача 1. Диаметр глобуса 0,25м. Вычислить площадь его поверхности. Задача 2. Сплошной металлический шар перелит в цилиндр, высота которого равна диаметру шара. Каково отношение диаметра основания цилиндра к диаметру шара? Задача 3. Купол здания имеет форму полушара с диаметром 6м. Что можно сказать о числах, выражающих поверхность полушара и его объем? Задача 4. В мензурку цилиндрической формы, радиус основания которой 4см, погружен шарик, радиус которого 3см. Насколько поднялась вода в мензурке?
|