Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Предел и непрерывность





Опр. Число называется пределом функции в точке , если для любого , найдется такое , что из условия: точка является точкой -окрестности т. с выколотым центром вытекает выполнение неравенства

Из определения, очевидно, что если предел функции в точке существует, то он не зависит от пути следования т. к т. .

Пример 1:

.

Показать, что функция не имеет предела в т. .

Решение:

Область определения функции – все точки плоскости ХОУ, кроме т. .

Для того чтобы убедиться, что в т. функция не имеет предел, достаточно заметить, что при приближении переменной точки к т. вдоль биссектрисы 1-го координатного угла значение функции все время остается неизменным и равным 0.

Если же приближаться к т. вдоль каких-либо других линий, то значения функции будут приближаться к другим числам. Так, например, если двигаться вдоль положительной полуоси ОУ , то значение функции остается все время равным -1 (то есть во всех точках этой полуоси ).

Таким образом, при приближении к точке по различным путям функция стремится к различным значениям. Следовательно, функция не имеет предела при .

Аналогично тому, как это делалось для функции одной переменной, можно доказать, что и для функций двух переменных предел суммы двух функций равен сумме их пределов; предел произведения равен произведению пределов сомножителей; предел частного равен частному от деления предела числителя на предел знаменателя (при условии, что предел делителя отличен от нуля).

Отметим также, что разность между функцией, имеющей предел, и ее пределом есть, очевидно, бесконечно малая функция. (функция называется бесконечно малой в точке, если ее предел в этой точке равен 0).

Опр.1 Функция называется непрерывной во внутренней точке области Е, где определена функция, если .

Если учесть, что , , , то определение 1 перейдет в

Опр. 2 Функция непрерывна в точке , если приращение функции стремится к нулю, при стремлении к нулю приращений и , то есть .

Опр. Функция называется непрерывной в области, если она непрерывна в каждой точке области.

Свойства непрерывных функций

Функции, непрерывные во всех точках некоторой замкнутой ограниченной области, обладают следующими свойствами, которые приведем без доказательств.

Т 1 (об ограниченности функции) Функция , непрерывная в замкнутой, ограниченной области, ограничена в этой области , т.е. , .

Т 2 (о наибольшем и наименьшем значениях функции) Непрерывная в замкнутой, ограниченной области функция принимает в этой области наибольшее и наименьшее значения.

Это означает, что в данной области существуют точки и , что для всех точек имеет место неравенства

и

Говорят, что в точке функция достигает наибольшего значения в данной области, а в точке - наименьшего.

Замечание: Если рассматривать функцию непрерывную не в замкнутой и ограниченной области, то Т 1 и Т2 могут оказаться неверными.

Т 3 (о промежуточных значениях) Пусть функция непрерывна в некоторой области . Тогда каковы бы ни были точки и этой области, для любого числа с, заключенного между и , существует в области такая точка , что .

В частности, если , а , то в области найдется такая точка, в которой значение функции равно нулю.







Дата добавления: 2015-10-19; просмотров: 392. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия