Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод Гаусса





Метод является универсальным, т.к. он позволяет решать системы линейных алгебраических уравнений с матрицами любой размерности и квадратными матрицами с определителем, равным нулю.

Метод Гаусса состоит в том, что производятся последовательные преобразования исходной системы уравнений в эквивалентную систему до тех пор, пока решение последней не станет очевидным или не станет очевидной неразрешимость системы.

Этот процесс осуществляется с помощью элементарных преобразований система линейных алгебраических уравнений, аналогичных элементарным преобразованиям матрицы до получения матриц эквивалентной системы ступенчатого вида.

Элементарные преобразования системы уравнений:

1.Перестановка любых двух уравнений.

2. Умножение обеих частей уравнения на одно и то же число, не равное нулю.

3. Прибавление к обеим частям одного уравнения системы соответствующих частей другого, умноженных на одно и то же число.

4. Вычеркивание уравнение вида 0·х1+0·х2+…+0·хn=0 как не несущего ни какой информации относительно решений системы.

Пример 1. Решить систему уравнений методом Гаусса

Решение. Выпишем расширенную матрицу системы, состоящую из коэффициентов при неизвестных и свободных членов уравнений (столбец свободных членов отделим вертикальной чертой) и приведем ее к ступенчатому виду.

       
 
   
 

 


~ ~

Символ «~» между матрицами означает, что матрицы эквивалентны (у них одинаковые ранги), но не равны.

~ = .

Теперь прибавим к 3-й строке 2-ю строку, умноженную 7/5, чтобы обнулить коэффициент при x 2 в 3-м уравнении.

~ =

Наконец, умножим 3-ю строку на 5, чтобы «избавится» от дробей. В результате преобразований получили матрицу ступенчатого вида.

Эта матрица представляет собой расширенную матрицу системы уравнений, эквивалентной данной системе. Запишем систему уравнений с новыми коэффициентами.

Из последнего уравнения найдем x 3, из 2-го найдем x 2, а из 1-го – x 1.

Проверка:

Ответ: (1; 2; 3).

В этом примере система имеет единственное решение. Рассмотрим пример, когда система имеет множество решений.

Пример 2. Решить систему уравнений:







Дата добавления: 2015-10-19; просмотров: 467. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Studopedia.info - Студопедия - 2014-2025 год . (0.148 сек.) русская версия | украинская версия