Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод Гаусса





Метод является универсальным, т.к. он позволяет решать системы линейных алгебраических уравнений с матрицами любой размерности и квадратными матрицами с определителем, равным нулю.

Метод Гаусса состоит в том, что производятся последовательные преобразования исходной системы уравнений в эквивалентную систему до тех пор, пока решение последней не станет очевидным или не станет очевидной неразрешимость системы.

Этот процесс осуществляется с помощью элементарных преобразований система линейных алгебраических уравнений, аналогичных элементарным преобразованиям матрицы до получения матриц эквивалентной системы ступенчатого вида.

Элементарные преобразования системы уравнений:

1.Перестановка любых двух уравнений.

2. Умножение обеих частей уравнения на одно и то же число, не равное нулю.

3. Прибавление к обеим частям одного уравнения системы соответствующих частей другого, умноженных на одно и то же число.

4. Вычеркивание уравнение вида 0·х1+0·х2+…+0·хn=0 как не несущего ни какой информации относительно решений системы.

Пример 1. Решить систему уравнений методом Гаусса

Решение. Выпишем расширенную матрицу системы, состоящую из коэффициентов при неизвестных и свободных членов уравнений (столбец свободных членов отделим вертикальной чертой) и приведем ее к ступенчатому виду.

       
 
   
 

 


~ ~

Символ «~» между матрицами означает, что матрицы эквивалентны (у них одинаковые ранги), но не равны.

~ = .

Теперь прибавим к 3-й строке 2-ю строку, умноженную 7/5, чтобы обнулить коэффициент при x 2 в 3-м уравнении.

~ =

Наконец, умножим 3-ю строку на 5, чтобы «избавится» от дробей. В результате преобразований получили матрицу ступенчатого вида.

Эта матрица представляет собой расширенную матрицу системы уравнений, эквивалентной данной системе. Запишем систему уравнений с новыми коэффициентами.

Из последнего уравнения найдем x 3, из 2-го найдем x 2, а из 1-го – x 1.

Проверка:

Ответ: (1; 2; 3).

В этом примере система имеет единственное решение. Рассмотрим пример, когда система имеет множество решений.

Пример 2. Решить систему уравнений:







Дата добавления: 2015-10-19; просмотров: 467. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Studopedia.info - Студопедия - 2014-2026 год . (0.014 сек.) русская версия | украинская версия