Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Поведение магнетиков в магнитном поле





 

Рассмотрим поведение веществ, помещенных во внешнее магнитное поле с индукцией . В этом случае мы рассматриваем не сам заряд, а именно движущийся заряд. Таким зарядом является движущийся по круговой орбите электрон. Как известно, направленное движение заряда представляет собой электрический ток. Поэтому движение электрона по орбите следует рассматривать как электрический ток силой . Введем понятие элементарного магнитного диполя – это движущийся по орбите электрон, обладающий орбитальным магнитным моментом. Элементарный электрический ток характеризуется магнитным моментом , который определяют формулой

 

, (1.66)

 

где – магнитный момент, – сила тока, – вектор элементарной площадки. На рис. 1.21 показано графическое изображение элементарного тока с вектором магнитного момента .

Рис. 1.21. Направление вектора элементарного магнитного момента

 

Магнетиками называются вещества, способные намагничиваться. Если магнетик помещен в пространство, в котором отсутствует магнитное поле, то магнитные моменты имеют хаотичную ориентацию, как показано на рис. 1.22а. Если магнетик помещен в магнитное поле с индукцией , то под действием этого поля элементарные магнитные моменты ориентируются в пространстве таким образом, чтобы вектор магнитного момента был сонаправлен с вектором магнитной индукции , т.е. . Упорядоченная ориентация молекулярных токов также показана на рис. 1.22б.

 

Рис. 1.22. Поведение магнетиков в магнитном поле

 

Описанный процесс называется намагничиванием. Иными словами, намагничивание – это процесс частичной ориентации молекул магнетика во внешнем магнитном поле.

Намагниченность вещества характеризуется вектором намагниченности , который определяется формулой

, (1.67)

где – вектор намагниченности вещества, – концентрация молекул, – элементарный магнитный момент.

Экспериментально установлено, что у большинства веществ при не слишком больших магнитных полях существует связь между вектором намагниченности и напряженностью внешнего действующего магнитного поля. Такую связь выражают линейной зависимостью в виде формулы


, (1.68)

 

где – намагниченность, – напряженность поля, – магнитная восприимчивость вещества.

Установлено, что магнитные свойства вещества можно описать, если вектор магнитной индукции представить в виде:

, (1.69)

где – магнитная постоянная, – напряженность магнитного поля, – намагниченность вещества. Учитывая формулу (1.68), можно формулу (1.69) записать в виде

. (1.70)

Введем обозначение

, (1.71)

где величина называется абсолютной магнитной проницаемостью вещества.

Уравнение (1.70) с учетом формулы (1.71) принимает более простой вид

, (1.72)

где – абсолютная магнитная проницаемость вещества.

Если среда является вакуумом, то намагниченность и связь между и принимает более простой вид

. (1.73)

 

Для практических расчетов часто используют относительную магнитную проницаемость, которая определяется отношением

. (1.74)

 

Все магнетики (вещества) в зависимости от значения относительной магнитной проницаемости делят на три класса:

- диамагнетики, если ;

- парамагнетики, если ;

- ферромагнетики, если .

Для большинства веществ относительная магнитная проницаемость близка к единице. В таблице 1.2 приведены значения относительной магнитной проницаемости для некоторых веществ.

 

 

Таблица 1.2

Относительная диэлектрическая проницаемость

Вещество Относительная диэлектрическая проницаемость
Вода Кислород Медь Серебро Алюминий 0,9999905 1,00000191 0,99999044 0,9999736 1,0000222

 

Формула связи между и в виде указывает на линейный характер связи. Отметим, что для ферромагнетиков такая связь имеет нелинейный характер.

В ферромагнетиках существуют отдельные микроскопические области (домены), имеющие размеры порядка . Внутри домена все элементарные магнитные моменты параллельны между собой. Поэтому каждый домен ферромагнетика обладает собственным магнитным моментом, величина которого зависит от структуры вещества и не зависит от внешнего поля. Если внешнее магнитное поле отсутствует, то магнитные моменты доменов ориентированы хаотично, а суммарный магнитный момент равен нулю. Если ферромагнетик находится во внешнем магнитном поле, то происходит ориентация магнитных моментов по направлению внешнего магнитного поля.

Уравнения в виде , называют материальными уравнениями или уравнениями состояния среды. Материальные уравнения справедливы для широкого класса материальных сред, но применимость этих уравнений имеет ограничения. Например, на высоких частотах векторы поляризации и намагничивания не успевают мгновенно следовать за изменением воздействующего внешнего поля. В этом случае наблюдается явление запаздывания. В результате параметры среды становятся зависимыми от частоты действующего электромагнитного поля. Такое явление носит название частотной дисперсии среды.

Основная особенность материальных уравнений заключается в их линейном характере. При дальнейшем изучении будем полагать, что в рассматриваемых средах выполняется линейность материальных уравнений. Помимо линейных, существуют нелинейные среды. Например, нелинейность среды проявляется при больших значениях напряженности полей. Так, электрическая нелинейность характерна для электромагнитных полей, создаваемых мощными лазерами. Упомянутые выше ферромагнетики проявляют магнитную нелинейность, а сегнетодиэлектрики – электрическую нелинейность среды при достаточно умеренных значениях напряженностей полей.







Дата добавления: 2015-10-19; просмотров: 1648. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия