Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнения Максвелла в комплексной форме





 

Выше указывалось, что уравнения Максвелла в дифференциальной форме описывают электромагнитные процессы в пространстве и во времени. Иными словами, в описании процесса используют три пространственные координаты, а четвертой переменной является время, т. е. необходимо наличие четырех переменных (). Мы учли, что используем декартову систему координат. Описать процесс при наличии четырех переменных достаточно сложно.

Систему уравнений Максвелла можно записать в иной форме, позволяющей «избавиться» от временной переменной и рассматривать электромагнитный процесс, протекающий в пространстве, с помощью трех переменных – координат ().

Рассмотрим более подробно вывод новой формы записи уравнений Максвелла. Примем, что сторонние токи отсутствуют. Уравнения Максвелла в дифференциальной форме в этом случае записывают в виде

 

 

Такая система уравнений записана для мгновенных значений и . Для гармонически изменяющихся во времени и запишем

(1.75)

где – амплитудные значения, – угловая частота, – время, – начальные фазы.

Мгновенные значения напряженности полей (1.75) можно записать в виде

, (1.76)

где – это мнимая часть. Тогда для мгновенных значений напряженностей полей запишем

 

,

где , .

Так как напряженности полей являются векторными величинами, будем обозначать их и . Стрелка означает, что речь идет о векторе в пространстве, точка – о том, что проекция вектора на любую координатную ось изменяется с течением времени по синусоидальному закону. Учитывая введенные обозначения, можно для плотности тока проводимости записать:

.

Плотность тока смещения представим в виде:

,

.

Тогда исходное уравнение Максвелла перепишем в виде

.

После сокращения получаем формулу

. (1.77)

 

Таким образом, получено уравнение Максвелла в комплексной форме записи.

Сформулируем правило перехода дифференциальной формы уравнений Максвелла к комплексной форме: оператор дифференцирования по времени, действующий на мгновенное значение поля, заменяется на множитель .

Аналогично можно преобразовать остальные уравнения системы. В результате система уравнений Максвелла в комплексной форме записи имеет вид:

 

 

,

,

,

, (1.78)

,

.

 

Таким образом, система уравнений Максвелла имеет три формы записи: интегральную, дифференциальную, комплексную.







Дата добавления: 2015-10-19; просмотров: 2409. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия