Студопедия — Закон Ома в дифференциальной форме
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Закон Ома в дифференциальной форме






Представим себе электрический ток не в привычном для нас проводнике, а однородной изотропной проводящей среде. В своём направленном движении носители заряда перемещаются по траекториям, которые называются «линии тока». Выделим в среде небольшую поверхность D S. Линии тока, коснувшиеся границы этой поверхности, в дальнейшем вырезают в пространстве «трубку тока» (рис. 6.4.). Особенность этой трубки состоит в том, что заряженные частицы, движущиеся внутри трубки тока, не пересекают её боковую поверхность, то есть они никогда не покидают свою трубку тока.

Рис. 6.4.

Выделим в трубке тока два эквипотенциальных сечения D S 1 и D S 2, отстоящие друг от друга на расстоянии D l (рис. 6.5.). Потенциалы этих сечений j1 и j2 = j1 + Dj. Для выделенного элемента трубки тока запишем закон Ома (6.11):

.

Рис. 6.5.

Сократив D S и введя удельную электропроводимость l = , получим:

.

Этот результат становится совсем точным, если перейти к пределу, устремив D l к нулю. Тогда D S = D S 1 = D S 2, так как трубка становится цилиндрической. Кроме того:

. (6.12)

Учитывая этот результат, плотность тока запишем так:

i = l E,

или в векторном виде:

. (6.13)

Уравнение (6.13) — математическая запись закона Ома в дифференциальной форме. В этом законе связываются две «локальные» характеристики тока: плотность тока в любой точке пространства и напряжённость электрического поля в той же точке. В соответствии с этим законом, плотность электрического тока прямо пропорциональна напряжённости поля в рассматриваемой точке пространства.

В приведённых рассуждениях есть момент, который не может не настораживать: в законе (6.13) Е — напряжённость электрического поля в проводящей среде с током. А для вычисления этой характеристики мы воспользовались связью напряжённости и потенциала электростатического поля в вакууме (6.12). Однако можно показать, что напряжённость электрического поля внутри однородной проводящей среды совпадает с электростатическим полем, которое существует в вакууме, если обеспечивается то же пространственное распределение потенциала, что и в проводящей среде при наличии тока (см., например, [2]).

Теперь на примере расчёта тока утечки в сферическом конденсаторе покажем, как используется закон Ома в дифференциальной форме для решения вполне реальных задач.

3. Пример расчёта силы тока в проводящей среде

Пространство между обкладками сферического конденсатора заполнено проводящей средой с удельной электропроводимостью . Какой ток потечёт в таком конденсаторе, если потенциалы электродов j1 и j2 поддерживать постоянными (рис. 6.6.)?

Рис. 6.6.

Задача обладает сферической симметрией. Выделим сферическую эквипотенциальную поверхность радиуса r. Во всех точках этой поверхности не только потенциал одинаков, но и плотность тока по величине одна и та же (6.13):

i = l Er,

где Er — напряжённость поля в проводящей среде на поверхности выделенной сферы r. Это поле совпадает с электростатическим полем в вакууме при разности потенциалов на обкладках конденсатора U = j1 – j2. Несложно показать, что для сферического конденсатора:

.

(При выводе этого выражения, можно воспользоваться следующими ранее полученными соотношениями: (2.19), (4.8), (4.5)).

Теперь, воспользовавшись законом Ома в дифференциальной форме, вычислим плотность тока

и полный ток, протекающий через замкнутую поверхность выделенной сферы:

.

Величина этого тока не зависит, конечно, от радиуса r выделенной сферической поверхности: I ¹ f (r). Зная закон сохранения электрического заряда, этот результат можно было бы предсказать a priori.

Теперь легко вычислить электрическое сопротивление проводящего слоя в конденсаторе:

.

Нелишне ещё раз напомнить, что здесь — удельное сопротивление среды, Rсопротивление проводящего слоя, а вот R 1 и R 2радиусы сферических обкладок конденсатора.







Дата добавления: 2015-10-19; просмотров: 548. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия