Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнение прямой в отрезках на осях





(рис. 2).

 

 

Рис. 2

Примеры

1. Найти угол между двумя прямыми

Из условия следует, что , тогда

, .

2. Написать уравнение прямой, проходящей через точку А

параллельно прямой .

Угловой коэффициент данной прямой , а из условия параллельности угловой коэффициент искомой прямой .Следовательно, уравнение параллельной прямой имеет вид Отсюда .

3. Написать уравнение прямой, проходящей через точку А

перпендикулярно прямой .

Угловой коэффициент данной прямой , а из условия перпендикулярности угловой коэффициент искомой прямой .

Следовательно, уравнение перпендикулярной прямой имеет вид

Отсюда .

4. Дана точка М(1; 1). Провести через эту точку прямую под углом к прямой .

Воспользуемся уравнением пучка прямых, проходящих через точку (1,1),

. Теперь найдем угловой коэффициент искомой прямой, воспользовавшись формулой:

5.Дан треугольник с вершинами Найти уравнение высоты .

Найдем уравнение стороны как уравнение прямой, проходящей через две заданные точки и .

, отсюда .

Прямые и перпендикулярны, следовательно, угловой коэффициент прямой равен .

Теперь запишем уравнение прямой как уравнение прямой, проходящей через точку , с угловым коэффициентом

, отсюда

6. Дан треугольник с вершинами Найти уравнение медианы .

Точка D лежит на середине отрезка ВС, тогда ее координаты равны полусумме, соответствующих координат, точек В и С, т.е. .

Напишем уравнение прямой, проходящей через две точки A и B,

.Отсюда получаем искомое уравнение .

7. Прямая отсекает на оси ОХ отрезок длинной 5, а на оси ОY отрезок длинной 4.

Найти уравнение этой прямой.

Используя уравнение в отрезках на осях, получим . Отсюда получаем

.

Общее уравнение прямой

Всякое уравнение первого порядка вида

есть уравнение прямой, и, наоборот, любую прямую линию можно задать уравнением данного вида.

Уравнение называется общим уравнением прямой. Если , то из общего уравнения можно получить уравнение прямой с угловым коэффициентом , т.е. .

Пусть заданы две прямые и .

Угол между этими прямыми можно определить из формулы: .

Отсюда следует, что равенство будет условием параллельности, а равенство будет условием перпендикулярности двух прямых.

Примеры

1. Определить точки пересечения прямой с координатными осями.

Полагаем , подставляя в уравнение прямой, получаем .

Полагаем , подставляя в уравнение прямой, получаем .

Точка пересечения прямой с координатными осями имеет координаты .

2. Написать уравнение прямой, проходящей через точку параллельно прямой .

Перейдем от общего уравнения к уравнению прямой с угловым коэффициентом

. Угловой коэффициент этой прямой . Воспользуемся уравнением прямой, проходящей через заданную точку с заданным угловым коэффициентом, и получим . Отсюда .

3. Написать уравнение прямой, проходящей через точку перпендикулярно прямой .

Перейдем от общего уравнения к уравнению прямой с угловым коэффициентом

. Угловой коэффициент этой прямой . Из условия перпендикулярности следует, что угловой коэффициент искомой прямой .

Воспользуемся уравнением прямой, проходящей через заданную точку с заданным угловым коэффициентом, и получим . Отсюда .

4. Найти угол между двумя прямыми и .

Угол между этими прямыми можно определить из формулы: .

Здесь , тогда , отсюда .

 

5. Дан ромб АВСD уравнения двух сторон ромба ВС и AD, а также диагонали BD (рис. 3). Найти уравнения диагонали АС.

Найдем координаты точки В:

Рис. 3

Найдем координаты точки D:

; .

Координаты центра - (B+D)/2: .

Найдем уравнение диагонали АС:

6. Найти расстояние от точки до прямой, проходящей через точки и .

Напишем уравнение прямой, проходящей через две заданные точки . Отсюда получаем . Теперь напишем уравнение прямой, проходящей через точку , перпендикулярно полученной прямой. Из условия перпендикулярности получим ее угловой коэффициент . Тогда уравнение перпендикуляра имеет вид . Отсюда . Найдем проекцию точки на прямую . Для чего решим систему уравнений и получим , т.е. проекция точки , которую обозначим , имеет координаты . Найдем расстояние , что и будет искомым расстоянием.

7. Найти точку , симметричную точке относительно прямой .

Угловой коэффициент заданной прямой , тогда угловой коэффициент перпендикуляра к ней Теперь можно написать уравнение прямой, проходящей через точку , перпендикулярно прямой , или . Найдем проекцию точки , которую обозначим , на прямую . Для чего решим систему уравнений и получим координаты точки ,

Обозначим точку симметричную точке относительно прямой . Ее координаты найдем из соотношений . Получим , это и будут координаты симметричной точки.

 

Прямая линия в пространстве

Дано (рис. 4).

.

 







Дата добавления: 2015-10-19; просмотров: 741. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия