Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Составляем математическую модель прямой и двойственной задач.





Математическая модель прямой задачи :

 

Целевая функция (на максимум)

Система ограничений:

Математическая модель двойственной задачи.

Решаем задачу по методу максимального элемента.

 

Составляем опорный план (табл. 2)

Табл.2

Bj Ai П1 П2 П3 П4 П5 Ui
         
СО-1   3 59 7 2 11W +W U1 =-1
5 0
СО-2   18 -W   49 32 +W 6   0 U2= 0
2 3 4
СО-3   29 +W       51 -W U3 =4
6 4 3 5 0
Vj V1 =2 V2 =8 V3 =4 V4 =6 V5 = -4 W=11

 

 

Проверяем на вырожденность.

 

Z= m+n-1=3+5-1=7

Базисных клеток 7. План не вырожден.

Проверяем опорный план на оптимальность.

 

Задаем U2 = 0 и определяем значения потенциалов.

Вычисляем оценки для всех незаполненных клеток (Dij)

 

 

Опорное решение не является оптимальным, так как имеются отрицательные оценки.

Переходим к следующему плану.

Для клетки (1,5) с наименьшей оценкой (-5) строим цикл. Ставим в эту клетку коэффициент W со знаком «+» и применяя метод наибольшего элемента находим цикл, (табл. 2). Определяем из цикла W =11

 

Осуществляем сдвиг по циклу и строим следующий план (табл. 3)

.

Табл.3

Bj Ai П1 П2 П3 П4 П5 Ui
         
СО-1   3 59 7 2   11 U1 =4
5 0
СО-2   7 -W   49 43 +W U2= 0
2 3 4 6 0
СО-3   40 +W       40 -W U3 =4
6 4 3 5 0
Vj V1 =2 V2 =3 V3 =4 V4 =6 V5 = -4  

 

 

Проверяем план на оптимальность методом максимального элемента, как в п.З.

 

Задаем U2 = 0 и определяем значения потенциалов.

 

Вычисляем оценки для всех незаполненных клеток (Dij)

 

 

 

Определяем из цикла W=7

Осуществляем сдвиг по циклу и строим следующий план (табл. 4).

Табл. 4

 

Bj Ai П1 П2 П3 П4 П5 Ui
         
СО-1   3 59 7 2   11 U1 =0
5 0
СО-2   2 3 49 4 43 6 7 0 U2= 0
СО-3   47 6 4 3 5 33 0 U3 =0
Vj V1 =6 V2 =7 V3 =4 V4 =6 V5 = 0  

 

Проверяем план на оптимальность методом максимального

элемента, как в п.З.

 

 

Задаем U2 = 0 и определяем значения потенциалов.

Вычисляем оценки для всех незаполненных клеток (Dij)

план табл. 4 оптимален.

 

Определяем значение целевой функции прямойидвойственной задачи:

 

Исходя из первой теоремы двойственности в условии нашей задачи Zmax=Zmin=1149 (Z=Z’) последний план оптимален

Ответ:

1) Чтобы за рабочий день было убрано максимально возможное количество картофеля, следует распределить студентов по полям следующим образом:

– Из СО-1 выделить 59 человек для уборки картофеля на втором поле П2, а 11 человек останутся в СО;

– из СО-2 выделить 49 человек для уборки картофеля на ПЗ и 43 человека для уборки картофеля на П4, а 7 человек останутся в СО;

– из СО-3 выделить 47 человек для уборки картофеля на П1, а 33 человека оставить в СО.

2) При данном оптимальном распределении студентов с четырех полей будет убрано 1149 центнеров картофеля.

 

 

Пример № 2

План перевозок:

 

Поставщики Аi Потребители Вj:
  Запасы аi Себестоимость В1 В2 В3 В4
       
А1            
А2            
А3            

 

 

Решение:

 

Проверяем на сбалансированность

 

 

Задача не сбалансированная. Введем фиктивного потребителя В5 с потребностью в грузе, равной 200 ед. Стоимость перевозки для фиктивного потребителя определим равной нулю.

В качестве общей стоимости будем брать сумму затрат на доставку единицы продукции из соответствующего пункта и ее себестоимость в этом пункте.







Дата добавления: 2015-10-19; просмотров: 448. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия