Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Математическая модель прямой задачи





 

при условии что,

Математическая модель двойственной задачи:

 

Экономический смысл переменных:

 

Z – целевая функция прямой задачи (суммарные затраты);

Z ' – целевая функция двойственной задачи (суммарная потенциальная прибыль от перевозки груза);

Сij – стоимость перевозки единицы продукции из i-го пункта в j-ый;

Xij – объем перевозок от i-го поставщика j-му потребителю;

Ui – условная плата перевозчику за вывоз единицы груза из i-го пункта отправления;

Vj – условная плата перевозчику за доставку единицы груза в j-ый пункт назначения.

 

Потребители Поставщики В1 В2 В3 В4 В5 Ui
         
А1   350 4 8 50 -W   +W U1 =-2
6 9 0
А2   9 100 +W       200 -W 0 U2= -6
5   10 4
А3   7 150 -W 100 +W 8 250 6 0 U3 =0
11
Vj V1 =6 V2 =11 V3 =8 V4 =6 V5 = 6 W=50

 

Проверяем на вырожденность:

R=m+n-1=3+5-1=7

m= 3 – количество поставщиков;

n = 5 – количество потребителей.

Базисных клеток 7, план не вырожден.

 

 

Проверяем план на оптимальность, используя метод потенциалов. Для базисных клеток составляем систему уравнений Ui + Vj = Сij находим значение потенциалов так как переменных на 1 больше, чем уравнений,

то переменной U3 присваиваем значение 0 и решаем систему уравнений, получаем

 

Проверяем выполнение неравенства в свободных: клетках Ui + VjСij

 

более всего не выполняется условие Ui + VjСij, сюда ставим «+W», строим контур перераспределения W и находим его значение:

Перераспределяем W=50 по контуру.

 

 

Составляем следующий план:

 

 

Потребители Поставщики В1 В2 В3 В4 В5 Ui
         
А1   350 -W       50 +W U1 =-6
4 8 6 9 0
А2     9 150 +W     150 -W 0 U2= -6
5 10 4
А3     +W 100 -W 150 8 250 6 0 U3 =0
7 11
Vj V1 =10 V2 =11 V3 =8 V4 =6 V5 = 6 W=100

 

Так как переменных на i больше, чем уравнений, то переменной U3 присваиваем значение 0 и решаем систему уравнений, получаем

 

проверяем выполнение неравенства в свободных клетках Ui + VjСij,

 

 

– более всего не выполняется условие Ui + VjСij, сюда ставим «+W», строим контур перераспределения W и находим его значение: перераспределяем W=100 по контуру.

 

 

Составляем следующий план:

 

Потребители Поставщики В1 В2 В3 В4 В5 Ui
         
А1   250 4 8 6 9 150 0 U1 =-3
А2   9 250 5 10 4 50 0 U2= -3
А3   100 7 11 150 8 250 6 0 U3 =0
Vj V1 =7 V2 =8 V3 =8 V4 =6 V5 = 3  

 

 

Проверяем выполнение неравенства Ui + VjСij, в свободных клетках:

 

 

Неравенство Ui + VjСij,в свободных клетках выполняется, построенной план является оптимальным.

 

Анализ решения.

 

1. Оптимальный план перевозки продукции:

– от поставщика А1 перевозится 250 ед. продукции потребителю В1; 150 ед. продукции остается у поставщика;

– от поставщика А2 перевозится 250 ед. продукции потребителю В2; 50 ед продукции остается у поставщика;

– от поставщика А3 перевозится 100 ед.продукции потребителю В1, 150 ед, потребителю В3, 250 ед. потребителю В4.

 

2.Суммарные затраты на изготовление и перевозку продукции:

 

ден. ед.

 

Контрольные вопросы.

1.Как сформулировать постановку транспортной задачи?

2.Какие величины в математической модели транспортной задачи постоянные и какие переменные?

3.Как составить математическую модель прямой и двойственной транспортной задачи?

4.Какая клетка в плане транспортной задачи называется «базисной» и какая «свободной»?

5.Приведите пример сбалансированной и несбалансированной транспортной задачи. Как сбалансировать исходный план транспортной задачи?

6.Поясните понятие «вырожденность» и «невырожденность» плана. Как построить «невырожденный» план?

7.Алгоритм метода наименьшего (наибольшего) элемента.

8.Метод потенциалов и его алгоритм.

9.Какой план транспортной задачи называется опорным?

10.Какой критерий оптимальности плана транспортной задачи?

11.Поясните понятие «коэффициент перераспределения груза – W» и как он определяется?

12.Как построить контур перераспределения W?

13.Анализ решения транспортной задачи.

 

4. Теория игр

Основные понятия.

 

 

Теория игр - это математическая теория, исследующая конфликтные ситуации, в которых принятие решений зависит от нескольких участников.

Математическая модель конфликтной ситуации называется игрой. Стороны, участвующие в конфликте - игроки, а исход конфликта - выигрыш (проигрыш). Выигрыш или проигрыш может быть задан количественно.

Игра называется антагонистической или игрой с нулевой суммой, если выигрыш одного из игроков равен проигрышу другого, поэтому для полного «задания» игры достаточно указать величину выигрыша первого игрока.

Стратегией игрока называется совокупность принципов, определяющих выбор его действий при каждом личном ходе в зависимости от сложившейся ситуации.

Для того чтобы найти решение игры, следует для каждого игрока выбрать стратегию, которая удовлетворяет условию оптимальности, т.е. один из игроков должен получать максимальный выигрыш, когда второй игрок придерживается своей стратегии. В тоже время второй игрок должен иметь минимальный проигрыш, если первый придерживается своей стратегии.

Такие стратегии называются оптимальными.

При выборе оптимальной стратегии следует полагать, что оба игрока ведут себя разумно с точки зрения своих интересов.

Матрица, элементы которой характеризуют прибыль первого игрока при всех возможных стратегиях (обозначается (αij)),называется платежной матрицей игры.

Величина α = max min a ij называется нижней ценой игры.

i j

Величина β = min max a ij называется верхней ценой игры.

j i

В некоторых задачах, приводящихся к игровым, имеется неопределенность, вызванная отсутствием информации об условиях, в которых осуществляется действие (погода, покупательский спрос и т.п.). Эти условия зависят не от сознательных действий другого игрока, а от объективной действительности. Такие игры называются играми с природой.

Человек в играх с природой старается действовать осмотрительно, второй игрок (природа и т.п.) действует случайно.

При решении задач, относящихся к теории игр, необходимо правильно классифицировать задачу, потому что методы, применяемые к антагонистическим играм кардинально отличаются от методов решения игр с природой.

 

 







Дата добавления: 2015-10-19; просмотров: 562. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия