Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Лабораторная работа № 3 по теме





"Адресация" и "Диаграммы";

1. Табулирование функции. Задание 3.1.

1) Рассчитать таблицу значений функции f(x)= , где x меняется от a до b.

2) Вывести значения функции в n точках этого интервала.

3) Построить график функции.

4) Изменяя значения a, b, n, проследить за изменением функции по её графику.

Выполнение.

1. Задать а= - , b = , n =10. Ввести эти значения в соответствующие ячейки, при вводе использовать функцию ПИ ();.

2. Вычислить шаг изменения функции по формуле: шаг =(b-а)/ n

3. Вычислить значения аргумента х:

Точка 1 - х = а (формула в ячейке B7: =С2);

Точка 2 - х = а + шаг (формула в В8: = B7+C$5);

формула из ячейки В8 копируется на блок ячеек В9:В17.

4. Вычислить значения функции F(x) по формуле:

= 4*EXP(-ABS(B7))-1,

формула из ячейки С7 копируется на блок С8:С17.

5. Диаграмму оформить с помощью Мастера диаграмм.

 
 

 

 


Рис.10. Иллюстрация к заданию 3.1.

2. Решение нелинейного уравнения

Задание 3.2. Решить уравнение f(x)= =0 графическим способом с заданной точностью 0,01.

G Напоминание.

1. Решить уравнение f(x) = 0 означает: найти значения аргумента х, при которых функция f(x) обращается в 0.

2. Решить уравнение графическим способом: найти точки пересечения графика функции с осью ОХ.

Решение.

1) Определить приближённые значения отрезка ОХ, в котором могут быть корни заданного уравнения.

2) Протабулировать функцию f(x)= в этом отрезке оси Х.

3) Построить график функции по полученным табличным значениям.

G Примечание. Для заданной функции первые три пункта решения выполнены в предыдущем задании 3.1.

4) Из графика следует, что функция в заданном отрезке

[- , ] имеет два пересечения оси ОХ, т.е. два корня.

Уточнить последовательно оба корня:

· задать значения а= -1.8, b = -1.2 (в этом отрезке функция переходит через 0). Обратить внимание на изменения в графике и табличные значения f(x). Если полученная точность (f(x)=0 с точностью 0.0063) вас устраивает, то первым корнем уравнения можно считать значение х1=-1.38.

· Если полученная точность не подходит, то нужно задать новые значения а и b (а= -1.39, b = -1.37).

Получается f(x)=0.003 в точке 3, при х= -1.386.

· Второй корень находится аналогичным образом. Функция симметрична относительно х=0, поэтому х2=1.386

 

 


Задание 3.3. Решить уравнение f(x)= = 0

Решение. с помощью итераций

§ Установить в ячейке С47 любое начальное значение х из отрезка [-2; 0].

§ Выделить ячейку D47, в которой вы­числяется F(x).

§ Выполнить команду " Сервис/ Подбор параметра ".

В диалоговом окне поле "Устано­вить в ячейке:" уже содержит адрес выделенной ячейки D47.

- в поле "Значение:" ввести 0,

- в поле "Изменяя значение ячейки:" ввести адрес ячейки C47, содержащей величину x, "ОК".

§ Выводится новое окно "Результаты подбора параметра" c найденным решением.

§ Аналогичным образом найти 2-й корень уравнения.

 

3. Построение поверхности сложной функции

Задание 3.4. Построить поверхность по формуле:

для х [0,4] и y [0,3].

Построить сечения и линии уровня[4] поверхности.

§ ввести значения х в столбец А, начиная с А2, автозаполнением с нуля c шагом 0,25 до х=4;

§ ввести значения y в строку 1, начиная с В1, автозаполнением с нуля c шагом 0,25 до y=3;

§ В В2 ввести формулу: EXP(-((A2-2)^2-(A2-2)*(B1-1)+(B1-1)^2));

§ адресам А2 и В1 задать необходимый для копирования формулы по строкам и столбцам тип адресации;

§ скопировать формулу из ячейки В2 на всю таблицу с заданным диапазоном x и y;

§ выделить всю таблицу, включая значения x и y, и построить диаграмму типа " поверхность ";

§ изменить ракурс просмотра диаграммы -«ухватить» угол (+)

диаграмму.
области построения и нажатой левой кнопкой мыши вращать

 

Рис.12. Поверхность задания 3.4

§ Построение линий уровня поверхности - тип диаграммы - "поверхность", проволочная контурная диаграмма (рис. 13а).

§ для построения сечений задать тип диаграммы - "точечная" без маркеров (рис. 13б);

 

 

б)

 
 

 

 


а)

 

 

Рис.13. Способы представления поверхности: а) линии уровня;

б) нормальные сечения







Дата добавления: 2015-10-19; просмотров: 585. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Studopedia.info - Студопедия - 2014-2024 год . (0.007 сек.) русская версия | украинская версия