Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интегрирование рациональных дробей. 1) Разложение рациональной дроби на сумму простых дробей.





1) Разложение рациональной дроби на сумму простых дробей.

Определение 1. Рациональной дробью называется отношение двух многочленов:

Определение 2. Рациональная дробь называется правильной, если m<n. В противном случае (если m ³ n) она называется неправильной.

Определение 3. Простыми рациональными дробями называются дроби следующих четырех типов:

I .

II .

III

IV

 

Теорема 3. Всякую неправильную рациональную дробь можно представить в виде суммы целой части (многочлена) и правильной рациональной дроби.

Пример 20. Представить дробь в виде суммы целой части и правильной рациональной дроби.

Так как высшая степень числителя равна 4, а знаменателя – 2, то данная дробь неправильная (4 > 2). Разделим числитель на знаменатель:

Следовательно, дробь можно записать в виде:

.

Ответ: .

 

Теорема 4. Любую правильную рациональную дробь можно единственным образом представить в виде суммы конечного числа простых рациональных дробей.

Разложение правильной рациональной дроби (m<n) на сумму простых дробей выполняют по следующей схеме:

а) Найти корни многочлена Qn (x) и представить его в виде произведения простых множителей:

,

Где ,

,

,

,

б) Записать разложение дроби с неопределенными коэффициентами:

в) Определить коэффициенты

суммарное число которых равно n, методом неопределенных коэффициентов.

Для этого необходимо все разложение привести к общему знаменателю и приравнять числитель полученной дроби Pm (x). Приравнивания в этих многочленах коэффициенты при одинаковых степенях x, получим систему из n линейных уравнений с n неизвестными. Эта система имеет единственное решение – интересующие нас коэффициенты.

 

Пример 21. Разложить дробь на сумму простых дробей.

1) Данная дробь правильная. Разложим знаменатель на множители:

.

2) Запишем разложение данной дроби на сумму простых дробей:

 

3) Для нахождения коэффициентов A, B и C приводим разложение к общему знаменателю и приравняем их числители.

 

 

Следовательно:

 

 







Дата добавления: 2015-10-19; просмотров: 564. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия