Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Схема исследования функции. Построение графика





1) Найти область определения функции y = f (x) – множество D(f) тех значений x, при которых y = f (x) имеет смысл.

 

2) Исследовать функцию на периодичность: выяснить, существует ли наименьшее положительное число T, что

f (x +T) = f (x) для любого x Î D(f).

Если «да», то целесообразно далее исследовать функцию и строить ее график только на некотором отрезке длиной периода T.

Затем продолжить график на всю область определения, разбивая ее на интервалы длины T, в которых повторяется картинка графика.

 

3) Исследовать функцию на четность и нечетность: выяснить, выполняются ли равенства:

f (- x) = f (x) для любого x Î D(f) – четность,

или f (- x) = - f (x) для любого x Î D(f) – нечетность.

Это позволяет узнать есть ли симметрия графика:

относительно оси O y – четная

или относительно начала координат – нечетная.

4) Найти точки пресечения графика функции с осями координат:

а) с осью O y: точка (0; f (o)), если OÎD(f),

б) с осью O y: точка (x k;0), где x kÎD(f) и является решением уравнения f (x) = 0.

 

5) Найти промежутки знакопостоянства: выяснить, при каких x Î D(f) выполняются неравенства f (x) > 0 (при этом график функции расположен выше оси O x) и f (x) < 0 (при этом график функции расположен ниже оси O x).

 

6) Исследовать функцию на непрерывность, установить тип точек разрыва (см. §6, п.1).

 

7) Найти вертикальные и наклонные асимптоты (см. §6, п.1).

 

8) Найти промежутки убывания и возрастания, экстремумы функции (см. §6, п.2 и п.3).

 

9) Найти множество E(f) значений функции.

 

10) Найти промежутки выпуклости, вогнутости и точки перегиба графика (см. §6, п.4).

 

11) Построить график функции, используя свойства, установленные в проведенном исследовании. Если в некоторых промежутках график остался неясным, то его уточняют по дополнительным точкам.

Пример. Исследовать функцию y = (x +2) e - x и построить ее график.

1) D(y) = R.

2) Функция не периодическая.

3) Так как y (- x) # y (x) и y (- x) # - y (x), то функция общего вида, не является ни четной, ни нечетной.

4) Точка пересечения графика

с O x: (-2;0), с O y: (0;2)

5) При x Î (-¥;-2) функция отрицательная,

при x Î (-2;+¥) функция положительная.

6) Функция непрерывна при x Î R.

7) Вертикальных асимптот нет.

Наклонные асимптоты: y = k x + b.

а)

k=0 при x®+¥;

.

b=0 при x®+¥;.

Следовательно, y = 0 – наклонная (горизонтальная) асимптота при x ®+¥.

 

б)

при x ®-¥ наклонной асимптоты нет.

8) f ’(x) = ((x +2) e - x )’ = 1× e - x +(x +2)×(- e - x ) = e - x (1- x -2) = -(x +1) e - x .

D(y ’) = R.

y ’ = 0: -(x +1) e - x = 0 Þ x = -1, f (-1) = 1× e 1 = e.

 

 

при x Î (-¥;-1) f (x) возрастает,

при x Î(-1;+¥) f (x) убывает,

при x = -1 f m ax (-1) = (-1+2) e -(-1) = e.

9) E(f) = (-¥; e), так как

и f m ax (-1) = e.

10) f ”(x) = (-(x +1) e - x)’ = -1 e - x +(x +1) e - x = e - x (x +1-1) = xe - x.

D(f ”) = R

f ”(x) = 0: xe - x = 0 Þ x = 0, f (0) = 2.

 

 

при x Î (-¥;0) график f (x) выпуклый

при x Î (-(0;+¥) график f (x) вогнутый

Точка (0;2) – точка перегиба графика.

11) Сведем результаты проведенного исследования в таблицу и построим график (рис. 12)

x -¥;-1 -1 -1;0   0;+¥
знак f ’(x) +   - - -
знак f ”(x) - - -   +
F (x)   e      

 

Рис. 12








Дата добавления: 2015-10-19; просмотров: 468. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия