Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Схема исследования функции. Построение графика





1) Найти область определения функции y = f (x) – множество D(f) тех значений x, при которых y = f (x) имеет смысл.

 

2) Исследовать функцию на периодичность: выяснить, существует ли наименьшее положительное число T, что

f (x +T) = f (x) для любого x Î D(f).

Если «да», то целесообразно далее исследовать функцию и строить ее график только на некотором отрезке длиной периода T.

Затем продолжить график на всю область определения, разбивая ее на интервалы длины T, в которых повторяется картинка графика.

 

3) Исследовать функцию на четность и нечетность: выяснить, выполняются ли равенства:

f (- x) = f (x) для любого x Î D(f) – четность,

или f (- x) = - f (x) для любого x Î D(f) – нечетность.

Это позволяет узнать есть ли симметрия графика:

относительно оси O y – четная

или относительно начала координат – нечетная.

4) Найти точки пресечения графика функции с осями координат:

а) с осью O y: точка (0; f (o)), если OÎD(f),

б) с осью O y: точка (x k;0), где x kÎD(f) и является решением уравнения f (x) = 0.

 

5) Найти промежутки знакопостоянства: выяснить, при каких x Î D(f) выполняются неравенства f (x) > 0 (при этом график функции расположен выше оси O x) и f (x) < 0 (при этом график функции расположен ниже оси O x).

 

6) Исследовать функцию на непрерывность, установить тип точек разрыва (см. §6, п.1).

 

7) Найти вертикальные и наклонные асимптоты (см. §6, п.1).

 

8) Найти промежутки убывания и возрастания, экстремумы функции (см. §6, п.2 и п.3).

 

9) Найти множество E(f) значений функции.

 

10) Найти промежутки выпуклости, вогнутости и точки перегиба графика (см. §6, п.4).

 

11) Построить график функции, используя свойства, установленные в проведенном исследовании. Если в некоторых промежутках график остался неясным, то его уточняют по дополнительным точкам.

Пример. Исследовать функцию y = (x +2) e - x и построить ее график.

1) D(y) = R.

2) Функция не периодическая.

3) Так как y (- x) # y (x) и y (- x) # - y (x), то функция общего вида, не является ни четной, ни нечетной.

4) Точка пересечения графика

с O x: (-2;0), с O y: (0;2)

5) При x Î (-¥;-2) функция отрицательная,

при x Î (-2;+¥) функция положительная.

6) Функция непрерывна при x Î R.

7) Вертикальных асимптот нет.

Наклонные асимптоты: y = k x + b.

а)

k=0 при x®+¥;

.

b=0 при x®+¥;.

Следовательно, y = 0 – наклонная (горизонтальная) асимптота при x ®+¥.

 

б)

при x ®-¥ наклонной асимптоты нет.

8) f ’(x) = ((x +2) e - x )’ = 1× e - x +(x +2)×(- e - x ) = e - x (1- x -2) = -(x +1) e - x .

D(y ’) = R.

y ’ = 0: -(x +1) e - x = 0 Þ x = -1, f (-1) = 1× e 1 = e.

 

 

при x Î (-¥;-1) f (x) возрастает,

при x Î(-1;+¥) f (x) убывает,

при x = -1 f m ax (-1) = (-1+2) e -(-1) = e.

9) E(f) = (-¥; e), так как

и f m ax (-1) = e.

10) f ”(x) = (-(x +1) e - x)’ = -1 e - x +(x +1) e - x = e - x (x +1-1) = xe - x.

D(f ”) = R

f ”(x) = 0: xe - x = 0 Þ x = 0, f (0) = 2.

 

 

при x Î (-¥;0) график f (x) выпуклый

при x Î (-(0;+¥) график f (x) вогнутый

Точка (0;2) – точка перегиба графика.

11) Сведем результаты проведенного исследования в таблицу и построим график (рис. 12)

x -¥;-1 -1 -1;0   0;+¥
знак f ’(x) +   - - -
знак f ”(x) - - -   +
F (x)   e      

 

Рис. 12








Дата добавления: 2015-10-19; просмотров: 468. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия