Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Понятие неопределенного интеграла





Определение 2. Множество всех первообразных данной функции f (x) на интервале (a; b) называется неопределенным интегралом функции f(x) на этом интервале и обозначается символом:

В обозначении знак называется знаком интеграла, - подынтегральным выражением, - подынтегральной функцией, - переменной интегрирования.

 

Теорема 2. Если функция f (x) непрерывна на (a; b), то она имеет на (a; b) первообразную и неопределенный интеграл.

Замечание. Операция нахождения неопределенного интеграла от данной функции f (x) на некотором промежутке носит название интегрирования функции f (x).

 

Свойства неопределенного интеграла.

Из определений первообразной F (x) неопределенного интеграла от данной функции f (x) на некотором промежутке следуют свойства неопределенного интеграла:

1. .

2. .

3. , где С – произвольная постоянная.

4. , где k = const.

5.

 

Замечание. Все вышеперечисленные свойства верны при условии. Что интегралы, фигурирующие в них, рассматриваются на одном и том же промежутке и существуют.

 

Таблица основных неопределенных интегралов.

Действие интегрирования является обратным действию дифференцирования, то есть по заданной производной f (x) надо восстановить начальную функцию F (x). Тогда из определения 2 и таблицы производных получается таблица основных интегралов.

1. .

2. .

3. .

4. .

5. .

6. .

7. .

8. .

9. .

10. .

11. .

12. .

13. .

14. .

15. .

16. .

В формулах 1-16 С – произвольная постоянная.

Замечание. Интеграл не от любой элементарной функции является элементарной функцией. Параметрами могут служить следующие интегралы, часто встречающиеся в задачах:

- интеграл Пуассона,

- интеграл Френеля,

- интегральный логарифм,

- интегральный косинус и синус.

Указанные функции существуют, имеют важное прикладное значение. Для них составлены таблицы значений.

 







Дата добавления: 2015-10-19; просмотров: 531. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия