Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интегрирование тригонометрических выражений





 

1) Интеграл вида

а) Если n - четное число и m - четное, то подынтегральное выражение преобразуют с помощью формул:

,

б) Если одно из чисел m или n – нечетное, то выполняют замену:

t = sin x, если n – нечетное;

t = cos x, если m – нечетное.

Эта замена приводит к интегрированию степенных интегралов или рациональных дроби.

в) Если оба числа m и n – нечетные, то интеграл берется как в случае замены:

t = sin x, так и t = cos x.

Пример 25.

Ответ:

Пример 26.

Ответ:

Пример 27.

Ответ:

 

 

2) Интегралы вида:

; ; .

Такие интегралы находят после предварительного применения формул:

Пример 28.

Ответ:

 

3) Интегралы вида , где f (u;V) – рациональная функция двух переменных.

Такие интегралы приводятся к интегралам от рациональных дробей с помощью замены:

;

;

;

Пример 29.

Ответ:

 

 

4) Интегралы вида , где f (u;V) – рациональная функция двух переменных.

 

Такие интегралы находят сведением к интегралу от рациональной дроби с помощью замены:

;

Пример 30.

 

Ответ:

 

 

5) Интегралы вида ; , где

Такие интегралы находят после предварительного применения формул:

;

Или с помощью замены:

;

или .

 

Пример 31.

Ответ:

 

Интегрирование некоторых видов иррациональных выражений

 

1) Интеграл вида

Такие интегралы находят с помощью преобразований и замены, аналогичным преобразованиям и замены для нахождения интеграла от простой рациональной дроби III типа.







Дата добавления: 2015-10-19; просмотров: 462. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия