Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интегрирование тригонометрических выражений





 

1) Интеграл вида

а) Если n - четное число и m - четное, то подынтегральное выражение преобразуют с помощью формул:

,

б) Если одно из чисел m или n – нечетное, то выполняют замену:

t = sin x, если n – нечетное;

t = cos x, если m – нечетное.

Эта замена приводит к интегрированию степенных интегралов или рациональных дроби.

в) Если оба числа m и n – нечетные, то интеграл берется как в случае замены:

t = sin x, так и t = cos x.

Пример 25.

Ответ:

Пример 26.

Ответ:

Пример 27.

Ответ:

 

 

2) Интегралы вида:

; ; .

Такие интегралы находят после предварительного применения формул:

Пример 28.

Ответ:

 

3) Интегралы вида , где f (u;V) – рациональная функция двух переменных.

Такие интегралы приводятся к интегралам от рациональных дробей с помощью замены:

;

;

;

Пример 29.

Ответ:

 

 

4) Интегралы вида , где f (u;V) – рациональная функция двух переменных.

 

Такие интегралы находят сведением к интегралу от рациональной дроби с помощью замены:

;

Пример 30.

 

Ответ:

 

 

5) Интегралы вида ; , где

Такие интегралы находят после предварительного применения формул:

;

Или с помощью замены:

;

или .

 

Пример 31.

Ответ:

 

Интегрирование некоторых видов иррациональных выражений

 

1) Интеграл вида

Такие интегралы находят с помощью преобразований и замены, аналогичным преобразованиям и замены для нахождения интеграла от простой рациональной дроби III типа.







Дата добавления: 2015-10-19; просмотров: 462. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия