Студопедия — Преобразование Фурье
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Преобразование Фурье






Анализ Фурье и теория линейных систем образуют фундамент, на котором построены теории формирования изображения, оптической обработки информации и голографии.

По определению преобразованием Фурье функции f (x) (действительной или комплексной) называется интегральная операция

.

Преобразование такого вида представляет собой функцию независимой переменной u, называемой частотой. Обратное преобразование Фурье функции F (u) записывается следующим образом

.

Необходимым условием существования преобразования Фурье является абсолютная интегрируемость функций f (x) и F (u), т.е. чтобы значения интегралов

были конечными. Функции, используемые в оптике, определены лишь на ограниченном интервале и для них это требование соблюдается всегда (переменные x и u называются сопряженными). Различия между прямым Фурье-образом и обратным Фурье-образом заключается в различных знаках, содержащихся в экспонентах выражений, а также в наличии множителя 1/2π в формуле обратного преобразования.

В литературе встречаются и другие определения преобразования Фурье, отличающиеся от приведенного здесь как знаком в экспоненте, так и численными коэффициентами, стоящими перед интегралом.

Аналогичным образом определяется и двумерное Фурье-преобразование.

Прямое

(1.1)

и обратное

Введем в выражении (1.1) обозначения u = x /λz; v = y/λz.

Величины u и v обычно называются частотами. Тогда выражение (1.1) примет вид

где

Отсюда видно, что выражение (1.1) с точностью до множителя представляет собой Фурье-образ распределения поля на поверхности σ как функцию пространственных частот u и v. Аналогичным образом можно преобразовать и выражение для сферической системы координат, введя обозначения

Большое распространение имеет и частный случай двумерного преобразования Фурье для функций, обладающих осевой симметрией, называемый преобразованием Фурье-Бесселя или преобразованием Ганкеля нулевого порядка. Если функция обладает осевой симметрией ее можно записать как функцию только радиуса r. Соответственно, Фурье-образ становится функцией ρ, не зависящей явно от угла ϕ.

где J 0(2π r ρ) - функция Бесселя первого рода нулевого порядка.

Учитывая, что

прямое преобразование Фурье можно записать в виде суммы косинус - и синус - преобразований:

В общем случае функция F (u, v) комплексная, и мы можем записать

Спектр амплитуд и фаз записывается соответственно в виде

Действительная часть Фурье-образа всегда четная функция, мнимая часть Фурье-образа - всегда нечетная функция. Комплексность спектра означает сдвиг отдельных его составляющих по фазе.

Основные свойства преобразования Фурье

Знание основных свойств преобразования Фурье позволяет значительно упростить анализ основных закономерностей пространственного спектра.

Чтобы показать, что функция f (x) и F (u) связаны интегральным преобразованием будем писать f (x) ⇔ F (u).

1. Свойства линейности. Пусть F 1(u) и F 2(u) Фурье-образы функций f 1(x) и f 2(x) соответственно, а a 1 и a 2 - произвольные комплексные числа. В этом случае Фурье-образ функции f (x) = a 1 f 1(x) + a 2 f 2(x) равен

Таким образом, спектр пространственных частот сложного объекта любой произвольной формы можно получить как сумму спектров простых геометрических фигур, пространственные спектры которых известны, что значительно упрощает вычислительные процедуры.

2. Изменение масштаба. Пусть a действительное число, тогда

.

Если a >0, то

если a <0,

Это свойство является очень важным для дифракции. Оно позволяет связать изменение размера изделия с изменением периода пространственного спектра.

Показывает их обратно пропорциональную зависимость.

3. Свойства сдвига. Если функцию f (x) сдвинуть на величину a, то мы получим

Из этого выражения следует, что смещение функции f(x) на величину a приводит лишь к дополнительному вращению фазы на величину ua, а модуль Фурье-образа остается неизменным.

Из этого свойства следует одно из основных достоинств приборов и устройств, основанных на дифракции - инвариантность к смещениям исследуемого объекта. (По определению: система, создающая изображение, является пространственно инвариантной, если изображение точечного источника меняет только положение, но не свою функциональную форму по мере того, как этот источник пробегает поле предмета) 11 Существует и обратное свойство

т.е. умножение исходной функции на exp(± ju0x) приводит к сдвигу Фурье- образа.

4. Свойство интерференции. Если имеются две одинаковые функции смещенные друг относительно друга на величину 2a, то

Следовательно, расстояние между последовательными нулевыми значениями функции равно π/a. Измеряя это расстояние можно определить постоянную a.

5. Свойства симметрии. Это свойство определяет четность преобразования Фурье и его удобно представить в виде таблицы 1.

Таблица 2.1

Функция f(x) Функция F(u) Функция [F(u)]2
Вещественная и четная Вещественная и четная Вещественная и четная
Вещественная и нечетная Мнимая и нечетная Вещественная и четная
Мнимая и четная Мнимая и четная Вещественная и четная
Мнимая и нечетная Вещественная и нечетная Вещественная и четная
Комплексная и четная Комплексная и четная Вещественная и четная
Комплексная и нечетная Комплексная и нечетная Вещественная и четная

6. Свойство спектров, взаимно дополнительных экранов. Рассмотрим свойство преобразования Фурье, присущее функциям, попарно дополняющим друг друга, т.е. таким у которых прозрачные части одного в точности совпадают с непрозрачными частями другого.

Для таких функций f(x) + fдоп(x) = 1.

Пропускание объекта fдоп(x) = 1 - f(x).

Его Фурье-спектр Fдоп(u) = δ (u) − F(u).

Таким образом, спектры, дополняющих друг друга бинарных объектов отличаются аддитивным членом, сконцентрированным на оптической оси (в начале координат).







Дата добавления: 2015-10-19; просмотров: 1066. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия