Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основные свойства преобразования Фурье





1. Свойства линейности. Пусть F 1(u) и F 2(u) Фурье-образы функций f 1(x) и f 2(x) соответственно, а a 1 и a 2 - произвольные комплексные числа. В этом случае Фурье-образ функции f (x) = a 1 f 1(x) + a 2 f 2(x) равен

Таким образом, спектр пространственных частот сложного объекта любой произвольной формы можно получить как сумму спектров простых геометрических фигур, пространственные спектры которых известны, что значительно упрощает вычислительные процедуры.

2. Изменение масштаба. Пусть a действительное число, тогда

.

Если a >0, то

если a <0,

Это свойство является очень важным для дифракции. Оно позволяет связать изменение размера изделия с изменением периода пространственного спектра.

Показывает их обратно пропорциональную зависимость.

3. Свойства сдвига. Если функцию f (x) сдвинуть на величину a, то мы получим

Из этого выражения следует, что смещение функции f(x) на величину a приводит лишь к дополнительному вращению фазы на величину ua, а модуль Фурье-образа остается неизменным.

Из этого свойства следует одно из основных достоинств приборов и устройств, основанных на дифракции - инвариантность к смещениям исследуемого объекта. (По определению: система, создающая изображение, является пространственно инвариантной, если изображение точечного источника меняет только положение, но не свою функциональную форму по мере того, как этот источник пробегает поле предмета) 11 Существует и обратное свойство

т.е. умножение исходной функции на exp(± ju0x) приводит к сдвигу Фурье- образа.

4. Свойство интерференции. Если имеются две одинаковые функции смещенные друг относительно друга на величину 2a, то

Следовательно, расстояние между последовательными нулевыми значениями функции равно π/a. Измеряя это расстояние можно определить постоянную a.

5. Свойства симметрии. Это свойство определяет четность преобразования Фурье и его удобно представить в виде таблицы 1.

Таблица 2.1

Функция f(x) Функция F(u) Функция [F(u)]2
Вещественная и четная Вещественная и четная Вещественная и четная
Вещественная и нечетная Мнимая и нечетная Вещественная и четная
Мнимая и четная Мнимая и четная Вещественная и четная
Мнимая и нечетная Вещественная и нечетная Вещественная и четная
Комплексная и четная Комплексная и четная Вещественная и четная
Комплексная и нечетная Комплексная и нечетная Вещественная и четная

6. Свойство спектров, взаимно дополнительных экранов. Рассмотрим свойство преобразования Фурье, присущее функциям, попарно дополняющим друг друга, т.е. таким у которых прозрачные части одного в точности совпадают с непрозрачными частями другого.

Для таких функций f(x) + fдоп(x) = 1.

Пропускание объекта fдоп(x) = 1 - f(x).

Его Фурье-спектр Fдоп(u) = δ (u) − F(u).

Таким образом, спектры, дополняющих друг друга бинарных объектов отличаются аддитивным членом, сконцентрированным на оптической оси (в начале координат).







Дата добавления: 2015-10-19; просмотров: 377. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия