Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основные свойства преобразования Фурье





1. Свойства линейности. Пусть F 1(u) и F 2(u) Фурье-образы функций f 1(x) и f 2(x) соответственно, а a 1 и a 2 - произвольные комплексные числа. В этом случае Фурье-образ функции f (x) = a 1 f 1(x) + a 2 f 2(x) равен

Таким образом, спектр пространственных частот сложного объекта любой произвольной формы можно получить как сумму спектров простых геометрических фигур, пространственные спектры которых известны, что значительно упрощает вычислительные процедуры.

2. Изменение масштаба. Пусть a действительное число, тогда

.

Если a >0, то

если a <0,

Это свойство является очень важным для дифракции. Оно позволяет связать изменение размера изделия с изменением периода пространственного спектра.

Показывает их обратно пропорциональную зависимость.

3. Свойства сдвига. Если функцию f (x) сдвинуть на величину a, то мы получим

Из этого выражения следует, что смещение функции f(x) на величину a приводит лишь к дополнительному вращению фазы на величину ua, а модуль Фурье-образа остается неизменным.

Из этого свойства следует одно из основных достоинств приборов и устройств, основанных на дифракции - инвариантность к смещениям исследуемого объекта. (По определению: система, создающая изображение, является пространственно инвариантной, если изображение точечного источника меняет только положение, но не свою функциональную форму по мере того, как этот источник пробегает поле предмета) 11 Существует и обратное свойство

т.е. умножение исходной функции на exp(± ju0x) приводит к сдвигу Фурье- образа.

4. Свойство интерференции. Если имеются две одинаковые функции смещенные друг относительно друга на величину 2a, то

Следовательно, расстояние между последовательными нулевыми значениями функции равно π/a. Измеряя это расстояние можно определить постоянную a.

5. Свойства симметрии. Это свойство определяет четность преобразования Фурье и его удобно представить в виде таблицы 1.

Таблица 2.1

Функция f(x) Функция F(u) Функция [F(u)]2
Вещественная и четная Вещественная и четная Вещественная и четная
Вещественная и нечетная Мнимая и нечетная Вещественная и четная
Мнимая и четная Мнимая и четная Вещественная и четная
Мнимая и нечетная Вещественная и нечетная Вещественная и четная
Комплексная и четная Комплексная и четная Вещественная и четная
Комплексная и нечетная Комплексная и нечетная Вещественная и четная

6. Свойство спектров, взаимно дополнительных экранов. Рассмотрим свойство преобразования Фурье, присущее функциям, попарно дополняющим друг друга, т.е. таким у которых прозрачные части одного в точности совпадают с непрозрачными частями другого.

Для таких функций f(x) + fдоп(x) = 1.

Пропускание объекта fдоп(x) = 1 - f(x).

Его Фурье-спектр Fдоп(u) = δ (u) − F(u).

Таким образом, спектры, дополняющих друг друга бинарных объектов отличаются аддитивным членом, сконцентрированным на оптической оси (в начале координат).







Дата добавления: 2015-10-19; просмотров: 377. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия