Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Двумерные функции





Основные свойства двумерного преобразования Фурье

В общем виде

где

Это можно показать, если в преобразование Фурье

ввести новые переменные, определяемые как

Пусть

Тогда из определения двумерного преобразования Фурье (см.1.1) имеем

Если ввести полярные координаты

и, таким образом, можно получить новую пару преобразований

т.е. поворот функции f(x,y) на угол θ0 ведет к повороту преобразований Фурье F(u,v) на тот же угол.

Особый интерес представляет преобразование Фурье функций с разделяющимися переменными. Т.е. это такие функции, которые можно записать в виде произведения двух функций, каждая из которых зависит только от одной независимой переменной.

а в полярных координатах

f (r,ϕ) = f (r) f (ϕ).

Фурье преобразование функции с разделяющимися переменными можно представить в виде произведения одномерных Фурье-преобразований

Особо можно выделить и двумерное преобразование Фурье функций, обладающих осевой симметрией. Функция обладает круговой симметрией если

Функцию с круговой симметрией в цилиндрических координатах можно записать как функцию только радиуса

Для этого случая преобразование Фурье имеет вид

Фурье-преобразование функции, имеющей осевую симметрию, само обладает осевой симметрией и может быть найдено путем выполнения одномерного действия. Этот вид преобразования встречается очень часто, особенно в оптике, и имеет свое название - преобразование Фурье-Бесселя или преобразование Ханкеля нулевого порядка.







Дата добавления: 2015-10-19; просмотров: 431. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия