Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Понятие обобщенных функций. Свойства. Операции





Обобщенные функции были введены в связи с трудностями решения некоторых задач математической физики, квантовой механики, электромагнетизма и т. д., где помимо непрерывных функций, описывающих непрерывно распределенные величины (масса, источники тепла, механический импульс и др.), понадобилось использовать разрывные функции для сосредоточенных величин (точечная масса, точечный источник тепла, сосредоточенный импульс и др.).

Из разрывных функций важную роль сыграла единичная функция θ(x), определенная следующим образом (рис. 3.1):

Эта функция была введена в 1898 г. английским инженером Хевисайдом для решения операционными методами некоторых дифференциальных уравнений теории электрических цепей.

Рис. 3.1. Функция Хевисайда

В 1926 г. английский физик Дирак ввел в квантовой механике символ δ, названный им дельта-функцией, которая явилась первой систематически применяемой обобщенной функцией. С физической точки зрения δ-функция Дирака представляет собой плотность единичного заряда, помещенного в начале координат. Если этот заряд имеет величину m, то его плотность

Отсюда следует, что дельта-функция δ (x) обладает свойствами

(3.1)

Свойства этой функции хорошо интерпретируются при рассмотрении фундаментального соотношения

(3.2)

справедливого для любой функции f(x), непрерывной при x = 0.

Заметим, что, строго говоря, δ(x) не представляет собой функцию, так как не существует функций, удовлетворяющих соотношениям (3.1 и 3.2). Но если интерпретировать последнее соотношение как функционал, т.е. как процесс придания функции f(x) значения f(0) то оно становится весьма интересным.

Запись в виде интеграла используется просто как удобная форма описания свойств этого функционала (линейность сдвиг, замена переменных и т.д.).

Таким образом, функцию δ(x) можно рассматривать как обычную функцию, удовлетворяющую всем формальным правилам интегрирования при условии, что все заключения относительно этой функции базируются на выражении (3.2), а не на каком-либо из ее отдельных свойств.

Дельта функцию можно рассматривать как предел

получаемый в результате использования основного соотношения

Следствием данного предела является тождество

Действительно,

Получился, таким образом, некоторый формализм в применении δ-функции, с помощью которого достаточно просто были исследованы некоторые разрывные явления. В частности, было замечено, что между единичной функцией θ(x) и функцией δ(x) существует связь

которая, очевидно, не имеет смысла в рамках классического анализа, но справедлива в смысле теории обобщенных функций.

Рассмотрим некоторые свойства δ-функции.

Если f(t) не имеет разрывов в точке t, то

Гребенчатая функция

Ряд, состоящий из бесконечного числа δ-функций, сдвинутых относительно друг друга на равные расстояния

называется гребенчатой функцией. При a = 1 имеем:

Гребенчатая функция, как это видно из соотношения симметрична относительно преобразования Фурье:

.

Гребенчатая функция играет важную роль при описании процессов дискретизации сигналов. Процедуру дискретизации (взятие выборок) удобно рассматривать как умножение сигнала f(x) на заданную периодическую последовательность тактовых импульсов, задаваемую функцией Ша(x).

 







Дата добавления: 2015-10-19; просмотров: 394. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия