Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Равномерная сходимость





Рассмотрим функциональный ряд, сходящийся в некоторой области. Обозначим сумму ряда через , тогда для всех из области сходимости имеем

(1)

Говорят, что ряд сходится к функции (а также, что ряд определяет, или выражает, или представляет функцию ).

Определение. Сходящийся функциональный ряд (1) называется равномерно сходящимся в некоторой области, если каждому сколь угодно малому числу соответствует такое целое положительное число , что -ый остаток при остается по абсолютной величине меньше , каково бы ни было в указанной области.

Если ряд сходится в интервале равномерно, то функцию – сумму ряда – можно приближенно представить при помощи одной и той же частичной суммы ряда

с одной и той же точностью во всех точках рассматриваемого интервала; эта точность характеризуется неравенством , справедливым при любом рассматриваемом , причем подбирается по заданному заранее .

Теорема. Сумма равномерно сходящегося в некоторой области ряда, составленного из непрерывных функций, есть функция, непрерывная в этой области.

Признак Вейерштрасса (достаточный признак равномерной сходимости). Пусть …, … – положительные числа. Если

а) в некоторой области …, ;

б) числовой ряд сходится,

то функциональный ряд в этой области сходится равномерно (и абсолютно).

Пример. Функциональный ряд

сходится равномерно для всех действительных , потому что при всех и

,

и обобщенный гармонический ряд с показателем сходится. ●

Как мы знаем, сумму конечного числа функций можно почленно дифференцировать и интегрировать. Эти свойства не всегда выполняются, если число слагаемых бесконечно, т.е. для рядов. Однако эти свойства сохраняются для равномерно сходящихся на сегменте функциональных рядов.

Теорема 1. Если члены равномерно сходящегося на сегменте функционального ряда непрерывны на этом сегменте, то ряд можно почленно интегрировать.

Это значит, что если и любые две точки сегмента , то

+ + … + …

Теорема 2. Пусть ряд составлен из функций, обладающих непрерывными производными. Если ряд, составленный из производных от членов данного ряда, равномерно сходится в некоторой области, то его сумма есть производная от суммы данного ряда в этой области.

Итак, применимость действий анализа к бесконечному функциональному ряду обеспечивается свойством равномерной сходимости ряда.

Применимость арифметических действий к бесконечному ряду обеспечивается свойством абсолютной сходимости ряда

Теорема 3. Если равномерно сходящийся на сегменте ряд умножить на ограниченную функцию , то полученный ряд

будет равномерно сходящимся на сегменте .







Дата добавления: 2015-10-18; просмотров: 635. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия