Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Простейшие свойства сходящихся рядов





Теорема 1. Если ряд сходится и имеет сумму S, то ряд (где с – некоторая постоянная) также сходится и имеет сумму cS.

Итак, если все члены данного сходящегося ряда умножить на одно и тоже число с, то сходимость этого ряда не нарушится, а сумма его умножится на то же число.

Таким образом, сходящиеся ряды подчиняются, подобно конечным суммам, дистрибутивному закону умножения – в сходящемся ряде можно выносить за скобки общий множитель всех членов ряда.

Теорема 2. Если ряды (1) и (2) сходятся и имеют соответственно суммы S и s, то ряды (3) и (4) также сходятся и их суммы соотвественно равны S + s и S – s.

Пример. Найдем сумму ряда .

Решение. По теореме 2:

.●

Таким образом: 1) сходящиеся ряды можно почленно складывать и вычитать так же, как и конечные суммы; 2) можно умножать члены сходящегося ряда на одно и тоже постоянное число, в результате получаются также сходящиеся ряды.

Замечание 1. Если ряды (1) и (2) оба расходятся, то о рядах (3) и (4) в общем случае ничего сказать нельзя. Они могут оказаться как сходящимися, так и расходящимися.

Рассмотрим два ряда

(5)

и

(6)

Теорема 3. Если сходится данный ряд (5), то сходится и ряд (6),полученный из ряда (5) отбрасыванием конечного числа k его первых членов. Обратно, если сходится ряд (6), то сходится и данный ряд (5).

Теорему 3 можно сформулировать следующим образом:.

На сходимость ряда не влияет отбрасывание любого конечного числа его первых членов.

Поэтому для установления сходимости ряда не обязательно учитывать все его члены. достаточно ограничиться членами, «начиная с некоторого места» или «начиная с некоторого номера п».







Дата добавления: 2015-10-18; просмотров: 726. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия