Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Если ряд (2) сходится, то ряд (1) также сходится,





2) если ряд (1) расходится, то ряд (2) также расходится.

Замечание. Признаки сравнения применимы и в том случае, когда условие выполняется не при всех n, а лишь начиная с некоторого n = N.

Пример 1. Исследовать на сходимость ряд .

Решение. Оценим общий член данного ряда: . Ряд с общим членом сходится (геометрический ряд). По теореме 1(п.1) данный ряд также сходится.●

Пример 2. Исследовать на сходимость ряд .

Решение. Рассмотрим вспомогательный ряд

,

который расходится (см. пример 3, §4). Так как

,

то по теореме 1(п.2) данный ряд также расходится. ●

Теорема 2 (второй признак сравнения рядов). Пусть даны два знакоположительных ряда (1) и (2). Если существует конечный, отличный от нуля, предел отношения общих членов этих рядов: , то оба ряда сходятся или расходятся одновременно.

Смысл этого признака состоит в том, что если общий член ряда (1) и общий член ряда (2) являются бесконечномалыми одного и того же порядка (при ), то сходимость одного из этих рядов влечет сходимость другого (а значит, и, наоборот, расходимость одного влечет расходимость другого).

При исследовании сходимости рядов с помощью признаков сравнения необходимо иметь для сравнения ряды, относительно которых известно, сходятся они или расходятся. В качестве таких рядов часто используют геометрический ряд, а также

обобщенный гармонический ряд,

который сходится при и расходится при . Это будет доказано ниже.

При получается

гармонический ряд.

Пример 1. Исследуем сходимость ряда .

Решение. Рассмотрим вспомогательный ряд , который сходится.

Вычисляем . Значит, по теореме 2 данный ряд сходится. ●

Пример 2. Исследуем сходимость ряда

Решение. Рассмотрим вспомогательный ряд , который расходится.

Вычисляем . Значит, по теореме 2 данный ряд расходится. ●







Дата добавления: 2015-10-18; просмотров: 528. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия