Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Знакочередующиеся ряды. Знакопеременным рядом называется ряд, членами которого являются действительные числа произвольного знака





Знакопеременным рядом называется ряд, членами которого являются действительные числа произвольного знака. Ряд, в котором за каждым положительным членом следует отрицательный и за каждым отрицательным членом следует положительный, называют знакочередующимся.

Обозначим – абсолютные величины членов ряда. Будем считать, что первый член ряда положителен. Тогда знакочередующийся ряд можно записать в виде:

(1)

Для знакочередующихся рядов имеет место достаточный признак сходимости Лейбница.

Теорема (признак Лейбница). Если члены знакочередующегося ряда удовлетворяют условиям: 1) , 2_ , то ряд сходится и его сумма .

Или: если в знакочередующемся ряде абсолютные величины членов убывают, и общий член ряда стремится к нулю, то ряд сходится, и его сумма не превосходит членов ряда.

Пример. Исследуем, сходится или расходится ряд

Решение. Этот ряд удовлетворяет условиям признака Лейбница:

1) ,

2) .

Следовательно, ряд сходится.●

Достаточный признак сходимости знакопеременного ряда

Рассмотрим общий случай знакопеременного ряда

,

где числа могут быть как положительными, так и отрицательными.

Для таких рядов имеет место общий достаточный признак сходимости знакопеременного ряда.

Теорема. Если для знакопеременного ряда







Дата добавления: 2015-10-18; просмотров: 480. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия