Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интегральные суммы. Определенный интеграл. Связь неопределенного интеграла с определенным. Формула Ньютона-Лейбница.





Множество T = { xi } точек отрезка [ a, b ], таких, что a = x0 < x1 < x2 < …… < xT–1 < xT= b называется разбиением отрезка [ a, b ].

Обозначим D xk длину отрезка [ xk-1 , xk ]. Тогда максимальное значение D xk называется мелкостью разбиения T.

Если множество Т* включает в себя множество Т, то говорят, что разбиение Т* следует за разбиением Т; или что разбиение Т* вписано в разбиение Т.

Для двух разбиений Т и Т* всегда найдется разбиение, вписанное и в Т, и в Т*.

ОПРЕДЕЛЕНИЕ. Если функция f (x) задана всюду на отрезке [ a, b ] и задано разбиение Т, то всякая сумма:

называется интегральной суммой Римана функции f.

ОПРЕДЕЛЕНИЕ. Функция f (x) называется интегрируемой по Риману на отрезке [ a, b ], если для любой последовательности разбиений Тn отрезка [ a, b ], мелкость которых стремится к нулю; и для любого набора точек x k последовательность интегральных сумм s Т n имеет один и тот же предел.

Предел последовательности интегральных сумм называют (определенным) интегралом Римана функции f на отрезке [ a, b ] и обозначается .

В интеграле число a называется нижним пределом интегрирования, а bверхним.

Одним из основных результатов математического анализа является теорема Ньютона – Лейбница:

Пусть функция f (x) непрерывна на [ a; b ], а F (x) – какая-либо первообразная функции f на этом отрезке. Тогда

 

Таким образом, для вычисления определенного интеграла нужно найти какую-либо первообразную F функции f, вычислить ее значения в точках a и b и найти разность F (b) – F (a).

Пусть f (x) непрерывна на [ a; b ], g (t) имеет непрерывную производную на [α; β], Тогда если a = g (α), b = g (β), то справедлива формула замены переменной в определенном интеграле:

Если функции u (x) и v (x) имеют на [ a; b ] непрерывные производные, то справедлива формула интегрирования по частям:







Дата добавления: 2015-12-04; просмотров: 206. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия