Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интегральные суммы. Определенный интеграл. Связь неопределенного интеграла с определенным. Формула Ньютона-Лейбница.





Множество T = { xi } точек отрезка [ a, b ], таких, что a = x0 < x1 < x2 < …… < xT–1 < xT= b называется разбиением отрезка [ a, b ].

Обозначим D xk длину отрезка [ xk-1 , xk ]. Тогда максимальное значение D xk называется мелкостью разбиения T.

Если множество Т* включает в себя множество Т, то говорят, что разбиение Т* следует за разбиением Т; или что разбиение Т* вписано в разбиение Т.

Для двух разбиений Т и Т* всегда найдется разбиение, вписанное и в Т, и в Т*.

ОПРЕДЕЛЕНИЕ. Если функция f (x) задана всюду на отрезке [ a, b ] и задано разбиение Т, то всякая сумма:

называется интегральной суммой Римана функции f.

ОПРЕДЕЛЕНИЕ. Функция f (x) называется интегрируемой по Риману на отрезке [ a, b ], если для любой последовательности разбиений Тn отрезка [ a, b ], мелкость которых стремится к нулю; и для любого набора точек x k последовательность интегральных сумм s Т n имеет один и тот же предел.

Предел последовательности интегральных сумм называют (определенным) интегралом Римана функции f на отрезке [ a, b ] и обозначается .

В интеграле число a называется нижним пределом интегрирования, а bверхним.

Одним из основных результатов математического анализа является теорема Ньютона – Лейбница:

Пусть функция f (x) непрерывна на [ a; b ], а F (x) – какая-либо первообразная функции f на этом отрезке. Тогда

 

Таким образом, для вычисления определенного интеграла нужно найти какую-либо первообразную F функции f, вычислить ее значения в точках a и b и найти разность F (b) – F (a).

Пусть f (x) непрерывна на [ a; b ], g (t) имеет непрерывную производную на [α; β], Тогда если a = g (α), b = g (β), то справедлива формула замены переменной в определенном интеграле:

Если функции u (x) и v (x) имеют на [ a; b ] непрерывные производные, то справедлива формула интегрирования по частям:







Дата добавления: 2015-12-04; просмотров: 206. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия