Признак Даламбера. Радикальный и интегральный признаки Коши.
При́знак д’Аламбе́ра (или Признак Даламбера) — признак сходимости числовых рядов, установлен Жаном д’Аламбером в 1768 г. Если для числового ряда существует такое число , , что начиная с некоторого номера выполняется неравенство то данный ряд абсолютно сходится; если же, начиная с некоторого номера то ряд расходится. Признак сходимости д’Аламбера в предельной форме Если существует предел то рассматриваемый ряд абсолютно сходится если , а если — расходится. Замечание. Если , то признак д′Аламбера не даёт ответа на вопрос о сходимости ряда.
Интегральный признак Коши́-Макло́рена — признак сходимости убывающего положительного числового ряда. Признак Коши-Маклорена даёт возможность свести проверку сходимости ряда к проверке сходимости несобственного интеграла соответствующей функции на , последний часто может быть найден в явном виде. Пусть для функции f(x) выполняется:
Тогда ряд и несобственный интеграл сходятся или расходятся одновременно. Набросок доказательства
|