Знакопеременные ряды. Знакочередующиеся ряды. Признак Лейбница.
Числовые ряды, содержащие как положительные, так и отрицательные члены, называются знакопеременными рядами. Ряды, все члены которых отрицательные числа, не представляют нового по сравнению со знакоположительными рядами, так как они получаются умножением знакоположительных рядов на – 1. Изучение знакопеременных рядов начнём с частного случая – знакочередующихся рядов. Определение 6. Числовой ряд вида u1-u2+u3-u4+…+ +(- 1 )n- 1. un+ …, где un – модуль члена ряда, называется знакочередующимся числовым рядом. (Признак Лейбница ) Если для знакочередующегося числового ряда (19) Выполняются два условия: Члены ряда убывают по модулю u1 > u2 >…> un >…,
то ряд (19) сходится, причём его сумма положительна и не превосходит первого члена ряда. Доказательство. Рассмотрим частичную сумму чётного числа членов ряда S2n = (u1-u2)+(u3-u4)+…+(u2n-1-u2n). По условию u1 > u2 >…> u2n-1 > u2n, то есть все разности в скобках положительны, следовательно, S2n возрастает с возрастанием n и S2n >0 при любом n. С другой стороны S2n = u1-[(u2-u3)+(u4-u5)+…+(u2n-2-u2n-1)+u2n]. Выражение в квадратных скобках положительно и S2n >0, поэтому S2n < u1 для любого n. Таким образом, последовательность частичных сумм S2n возрастает и ограничена, следовательно, существует конечный S2n = S. При этом 0< S ≤ u1. Рассмотрим теперь частичную сумму нечётного числа членов ряда S2n+1 = S2n + u2n+1. Перейдём в последнем равенстве к пределу при n→∞;: S2n+1= S2n+ u2n+1=S+ 0 =S. Таким образом, частичные суммы как чётного, так и нечётного числа членов ряда имеют один и тот же предел S, поэтому Sn = S, то есть данный ряд сходится. Теорема доказана.
|