Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Функции нескольких переменных. Частные производные, дифференциалы функций нескольких переменных.





Частной производной от функции по независимой переменной называется производная

, вычисленная при постоянном .

Частной производной по y называется производная , вычисленная при постоянном . Для частных производных справедливы обычные правила и формулы дифференцирования.

Пример 1. .

Рассматривая как постоянную величину , получим .

Рассматривая как постоянную величину , получим .

Пример 2.

; ;

; .

Полным приращением функции в точке называется разность , где и произвольные приращения аргументов. Функция называется дифференцируемой в точке , если в этой точке полное приращение можно представить в виде , где .

Полным дифференциалом функции называется главная часть полного приращения , линейная относительно приращений аргументов и , то есть .

Полный дифференциал функции вычисляется по формуле .

Для функции трех переменных .

При достаточно малом для дифференцируемой функции справедливы приближенные равенства ; , которые применяются для приближенного вычисления значения функции

. (*)

Пример 3. Вычислить приближенное значение: .

Решение. Полагая, что есть частное значение функции в точке и что вспомогательная точка будет , получим

; ; ; .

Подставляя в формулу (*), найдем:

.

Частными производными второго порядка от функции называются частные производные от ее частных производных первого порядка.

Обозначения частных производных второго порядка:

; ;

; .

Смешанные производные, отличающиеся друг от друга лишь последовательностью дифференцирования, равны между собой, если они непрерывны: .

Дифференциалом второго порядка от функции называется дифференциал от ее полного дифференциала, то есть . Если и – независимые переменные и функция имеет непрерывные производные, то дифференциал второго порядка вычисляется по формуле .

Пример 4. . Найти , , .

Решение. Найдем частные производные: ; . Дифференцируя повторно, получим ;

; .







Дата добавления: 2015-12-04; просмотров: 282. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия