Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теоремы сравнения





Пусть f (x) и g (x) является непрерывными функциями в интервале [ a, ∞;). Предположим, что для всех x в интервале [ a, ∞;).

1. Если сходится, то также сходится;

 

2. Если расходится, то также расходится;

 

3. Если сходится, то также сходится. В этом случае говорят, что интеграл является абсолютно сходящимся.

 

Интеграл от разрывной функции

Пусть функция f (x) непрерывна в интервале [ a,b), но имеет разрыв в точке x = b. В этом случае несобственный интеграл определяется в виде

Аналогично можно рассмотреть случай, когда функция f (x) непрерывна в интервале (a,b ], но имеет разрыв при x = a. Тогда

Если приведенные выше пределы существуют и конечны, то говорят, что соответствующие несобственные интегралы сходятся. В противном случае они считаются расходящимися.

Пусть f (x) непрерывна для всех действительных x в интервале [ a,b ], за исключением некоторой точки . Тогда справедливо соотношение

и говорят, что несобственный интеграл сходится, если оба интеграла в правой части верхнего равенства сходятся. В противном случае несобственный интеграл расходится.

Дифференциальные уравнения (ДУ). Основные понятия. Задача Коши. Общие сведения о дифференциальных уравнениях 1-го порядка (ДУ -1).

Дифференциальное уравнение — уравнение, связывающее значение производной функции с самой функцией, значениями независимой переменной, числами (параметрами). Порядок входящих в уравнение производных может быть различен (формально он ничем не ограничен). Производные, функции, независимые переменные и параметры могут входить в уравнение в различных комбинациях или все, кроме хотя бы одной производной, отсутствовать вовсе. Дифференциальное уравнение порядка выше первого можно преобразовать в систему уравнений первого порядка, в которой число уравнений равно порядку исходного уравнения.

Не любое уравнение, содержащее производные неизвестной функции, является дифференциальным уравнением. Например, не является дифференциальным уравнением.

Порядок, или степень дифференциального уравнения — наивысший порядок производных, входящих в него.

Решением (интегралом) дифференциального уравнения порядка n называется функция y (x), имеющая на некотором интервале (a, b) производные до порядка n включительно и удовлетворяющая этому уравнению. Процесс решения дифференциального уравнения называется интегрированием. Задача об интегрировании дифференциального уравнения считается решённой, если нахождение неизвестной функции удается привести к квадратуре, независимо от того, выражается ли полученный интеграл в конечном виде через известные функции или нет.

Все дифференциальные уравнения можно разделить на обыкновенные (ОДУ), в которые входят только функции (и их производные) от одного аргумента, и уравнения с частными производными (УРЧП), в которых входящие функции зависят от многих переменных. Существуют также стохастические дифференциальные уравнения (СДУ), включающие случайные процессы.

В зависимости от комбинаций производных, функций, независимых переменных дифференциальные уравнения подразделяются на линейные и нелинейные, с постоянными или переменными коэффициентами, однородные или неоднородные. В связи с важностью приложений в отдельный класс выделены квазилинейные (линейные относительно старших производных) дифференциальные уравнения в частных производных.

Важнейшим вопросом для дифференциальных уравнений является существование и единственность их решения. Разрешение этого вопроса дают теоремы существования и единственности, указывающие необходимые и достаточные для этого условия. Для обыкновенных дифференциальных уравнений такие условия были сформулированы Липшицем (1864). Для уравнений в частных производных соответствующая теорема была доказана С. В. Ковалевской (1874)

Решения дифференциальных уравнений подразделяются на общие и частные решения. Общие решения включают в себя неопределенные постоянные, а для уравнений в частных приозводных — произвольные функции от независимых переменных, которые могут быть уточнены из дополнительных условий интегрирования (начальных условий для обыкновенных дифференциальных уравнений, начальных и граничных условий для уравнений в частных производных). После определения вида указанных постоянных и неопределенных функций решения становятся частными.

Поиск решений обыкновенных дифференциальных уравнений привел к установлению класса специальных функций — часто встречающихся в приложениях функций, не выражающихся через известные элементарные функции. Их свойства были подробно изучены, составлены таблицы значений, определены взаимные связи и т. д.

Развитие теории дифференциальных уравнений позволило в ряде случаев отказаться от требования непрерывности исследуемых функций и ввести обобщённые решения дифференциальных уравнений.

Зада́ча Коши́; — одна из основных задач теории дифференциальных уравнений (обыкновенных и с частными производными); состоит в нахождении решения (интеграла) дифференциального уравнения, удовлетворяющего так называемым начальным условиям (начальным данным).

Задача Коши обычно возникает при анализе процессов, определяемых дифференциальным законом эволюции и начальным состоянием (математическим выражением которых и являются уравнение и начальное условие). Этим мотивируется терминология и выбор обозначений: начальные данные задаются при , а решение отыскивается при .

От краевых задач задача Коши отличается тем, что область, в которой должно быть определено искомое решение, здесь заранее не указывается. Тем не менее, задачу Коши можно рассматривать как одну из краевых задач.

Основные вопросы, которые связаны с задачей Коши, таковы:

  1. Существует ли (хотя бы локально) решение задачи Коши?
  2. Если решение существует, то какова область его существования?
  3. Является ли решение единственным?
  4. Если решение единственно, то будет ли оно корректным, то есть непрерывным (в каком-либо смысле) относительно начальных данных?

Говорят, что задача Коши имеет единственное решение, если она имеет решение и никакое другое решение не отвечает интегральной кривой, которая в сколь угодно малой выколотой окрестности точки имеет поле направлений, совпадающее с полем направлений . Точка задаёт начальные условия.

Уравнение

F (x, y, y ') = 0,

где y = y (x) — неизвестная, непрерывно дифференцируема на (a, b) функция, называется обыкновенным дифференциальным уравнением первого порядка.

 

Функция y = y (x) называется решением дифференциального уравнения F (x, y, y ') = 0, если она непрерывно дифференцируема на (a, b) и F (x, y (x), y '(x)) ≡ 0 для всех x из (a, b).

 

График решения дифференциального уравнения называют интегральной кривой дифференциального уравнения.

 

Дифференциальное уравнение 1–го порядка имеет бесконечно много решений. Для того чтобы выделить единственное решение, нужно задать дополнительные (начальные) условия.

Задача отыскания решения y = y (x) уравнения F (x, y, y ') = 0, удовлетворяющего условию y (x 0) = y 0, называется задачей Коши (или начальной задачей).

Условие y (x 0) = y 0 — начальное условие.

 

Любое конкретное решение y = y (x) (решение задачи Коши) уравнения 1–го порядка, называется частным решением уравнения.

 

Общее решение уравнения, записанное в неявной форме Φ;(x, y) = C, называется общим интегралом уравнения.

 

Частное решение уравнения, записанное в неявной форме Φ;(x, y) = 0, называется частным интегралом уравнения.

 

Уравнение 1-го порядка, разрешенное относительно производной, называют уравнением, записанными в нормальной форме:

 

Уравнения первого порядка часто записывают в дифференциальной форме:

M (x, y)d x + N (x, y)d y = 0.

Решение такого уравнения можно искать как в виде y = y (x), так и в виде x = x (y).







Дата добавления: 2015-12-04; просмотров: 217. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия