Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вычисление определителей





Значение определителя 2-го порядка легко вычисляется по определению используя формулу (2). Для нахождения значения определителя 3-го порядка можно использовать формулу (3). Определители более высоких порядков в принципе тоже можно было бы вычислять по определению, однако это требует очень больших усилий. Чаще поступают следующим образом: определитель n-го порядка сводят к опреде-лителям (n-1)-го порядка, последние - к определителям (n-2)-го порядка и т. д., до тех пор, пока, наконец, не получат определители 3-го или 2-го порядка. В основе этого принципа "постепенного понижения порядка" лежит теорема разложения: определитель n-го порядка D записывается в виде суммы определителей порядка (n-1) ("раскладывается по элементам i-й строки или j-го столбца"); к каждому из этих определителей порядка n-1 вновь может быть применена теорема разложения.

Если все элементы аik i-й строки определителя D, кроме одного, равны нулю, то сумма, полученная после применения теоремы разложения, содержит только одно отличное от нуля слагаемое. Таким образом, вычисления существенно упрощаются, если перед разложением определителя по элементам i-й строки как можно больше из них будут превращены в нули. Это становится возможным благодаря применению свойств определителей (особенно свойства 5).

Еще удобнее оказывается вычисление определителя, если, применяя его свойства, можно преобразовать его так, чтобы все элементы, стоящие слева и ниже диагонали а11, а22,..., аnn были равны нулю. Как легко понять на основании теоремы разложения, значение определителя получается тогда просто как произведение членов, стоящих на главной диагонали: D = a11a22...аnn.

4.Правило Крамера (вывод формул…)

Рассмотрим систему 3-х линейных уравнений с тремя неизвестными:

Определитель третьего порядка, соответствующий матрице системы, т.е. составленный из коэффициентов при неизвестных, называется определителем системы.

Составим ещё три определителя следующим образом: заменим в определителе D последовательно 1, 2 и 3 столбцы столбцом свободных членов

Тогда можно доказать следующий результат.

Теорема (правило Крамера). Если определитель системы Δ ≠ 0, то рассматриваемая система имеет одно и только одно решение, причём

Доказательство. Итак, рассмотрим систему 3-х уравнений с тремя неизвестными. Умножим 1-ое уравнение системы на алгебраическое дополнение A11 элемента a11, 2-ое уравнение – на A21 и 3-е – на A31:

 

Сложим эти уравнения:

 

Рассмотрим каждую из скобок и правую часть этого уравнения. По теореме о разложении определителя по элементам 1-го столбца

Далее рассмотрим коэффициенты при x2: Аналогично можно показать,

что и

Наконец несложно заметить, что

Таким образом, получаем равенство:

Следовательно,

Аналогично выводятся равенства и , откуда и следует утверждение теоремы.

Таким образом, заметим, что если определитель системы Δ ≠ 0, то система имеет единственное решение и обратно. Если же определитель системы равен нулю, то система либо имеет бесконечное множество решений, либо не имеет решений, т.е. несовместна.







Дата добавления: 2015-12-04; просмотров: 168. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия