Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теоретическая часть. В теории изгиба и кручения важную роль играют моменты инерции сечения





В теории изгиба и кручения важную роль играют моменты инерции сечения. Необходимо вспомнить и повторить из теоретической механики правила нахождения центра тяжести сечения и статических моментов плоских фигур.

Необходимо уяснить вычисление моментов инерции для простейших плоских фигур (прямоугольника, треугольника, круга).

Рассматривая теорему о моменте инерции сечения относительно оси, параллельной центральной (Iy1=Iy+a2A), необходимо понять, что теорема справедлива только в том случае, если ось «у» проходит через центр тяжести фигуры.

Важно уяснить, что сумма моментов инерции относительно двух взаимно перпендикулярных осей равна полярному моменту инерции относительно точки пересечения этих осей.

Приступая к изучению раздела «Кручение», следует отметить, что данную деформацию испытывают такие детали машин, как валы, пружины, иногда болты при затяжке гайки ключом и др. Деформация кручения появляется при нагружении бруса парами сил, плоскости, действия которых перпендикулярны к его оси. Моменты этих пар называют вращающими моментами.

При вычислении вращающих моментов пользуются формулой:

,

где N – мощность в кВт,

угловая скорость;

n – число оборотов в минуту;

М – вращающий момент в н.м.

Необходимо уяснить те допущения, на которых основана элементарная теория кручения стержней круглого сечения: крайние сечения остаются плоскими, расстояния между поперечными сечениями не изменяются, радиусы, проведенные на торцевых сечениях, остаются прямолинейными и поворачиваются вместе с сечениями на некоторый угол.

Следует разобраться в построении эпюры крутящих моментов. Эпюра показывает изменение величины крутящего момента по длине вала. Необходимо уметь самостоятельно выполнять вывод формулы для напряжений при кручении стержня круглого сечения.

При кручении напряжение распределяется по поперечному сечению неравномерно (в линейной зависимости от расстояния точки до полюса сечения)

, (10)

где ρ – расстояние до точки сечения;

Ip – полярный момент инерции площади сечения;

Мкр – крутящий момент в поперечном сечении;

τ – касательное напряжение в точке, находящейся на расстоянии ρ от оси бруса.

Опасными считаются все точки контура сечения, геометрическими характеристиками прочности и жесткости сечения являются соответственно полярный момент сопротивления и полярный момент инерции, значения которых зависят не только от площади, но и от формы сечения. Рациональным (т.е. дающим экономию материала) является кольцевое сечение, имеющее по сравнению с круглым сплошным, меньшую площадь при равном моменте сопротивления (моменте инерции).

Необходимо уметь рассчитывать диаметр вала из условия прочности:

и условия жесткости:

, где

где Wp – полярный момент сопротивления площади сечения,

ℓ - длина вала,

G – модуль упругости при сдвиге,

Ір – полярный момент инерции площади сечения.

Для бруса из пластичного материала принимают [τ]=(0,55-0,6) [σр], для валов из конструкционных сталей обычно принимают [τ]=20 … 50 МПа.

Допускаемый угол закругления в машиностроении принимают:

0]=0,25 … 1,00 град/м.







Дата добавления: 2015-12-04; просмотров: 300. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия