Компьютерная томография
Компьютерная томография — это со-временный метод, позволяющий визуализировать особенности строения мозга человека с помощью компьютера и рентгеновской установки (рис. 2.13).
В установке, предназначенной для компьютерной томографии, источник рентгеновских лучей вращается в одной плоскости вокруг головы, а рентгеновские детекторы постоянно регистрируют интенсивность проходящего сквозь голову излучения. Компьютерные программы преобразуют полученные данные в рисунки срезов мозга различной глубины (рис. 2.14). Толщина подобных срезов может не превышать 5 мм. Для улучшения качества изображения перед исследованием пациенту вводят контрастное вещество. Особенно эффективна компьютерная томография для исследования повреждений мозга, например, вследствие инсульта (рис. 2.15), рассеянного склероза, опухолей. Кроме очевидной необходимости этого метода для хирургического исследования перед операциями он Рис. 2.14. Сканирование с помощью метода компьютерной томографии. (а) Снимок, полученный на компьютерном томографе; (б) Фотография среза мозга на том же уровне, что и на снимке, приведенном на рисунке (a) (Carlson, 1992). Рис. 2.15. Снимки мозга больных, перенесших инсульт на правой половине мозга, полученные с помощью метода компьютерной томографии (Carlson, 1992). представляет значительный интерес для психофизиологов и нейрофизиологов, которые изучают когнитивные процессы и поведение людей, имеющих повреждения мозга. Информативность томограмм увеличивается благодаря применению контрастных веществ, например, верографина (препарата, содержащего йод). Полученная информация в виде снимков может храниться на магнитных носителях, что позволяет пересылать их по каналам компьютерной связи на любые расстояния для консультации специалистов (Лалаянц, Милованова, 1991). Позитронно-эмиссионная томография (ПЭТ) Этот метод позволяет оценить метаболическую активность в различных участках мозга. Он во многом схож с авторадиографией: испытуемый проглатывает радиоактивное соединение, позволяющее проследить изменения кровотока в том или ином отделе мозга, что косвенно указывает на уровень метаболической активности в нем. Таким радиоактивным соединением может быть 2-дезоксиглкжоза, имеющая одну из меток — радиоактивные изотопы углерода (С,,), фтора (F|8), кислорода (О|5), азота (N13). Время полураспада этих веществ составляет от 110 сек для фтора до 120 сек для кислорода. Метаболически активные участки мозга с большей интенсивностью поглощают 2-дезоксиглюкозу из крови, которая в отличие от Рис. 2.16. Результаты ПЭТ сканирования мозга здорового человека в различных экспериментальных ситуациях (Phelps, Mazziotta, 1985). обычной глюкозы не включается в метаболические процессы и только накапливается в мозге. Радиоактивные изотопы излучают позитроны, которые, встречая в мозге электроны, уничтожаются (аннигилируют), излучая 2 гамма-луча, направляющиеся в противоположные стороны. В специальной камере монтируются детекторы гамма-лучей, собранные в кольца. В камеру помещается голова испытуемого, радиоактивные молекулы 2-дезоксиглю-козы фиксируются сканером (Plum e. а., 1976) (рис. 2.16). Полученные данные обрабатываются компьютером, и на основе результатов воссоздается картина метаболически активных участков мозга. Особенностью ПЭТ является то, что она позволяет снимать “динамические” картины функционирования мозга, решающего ту или иную задачу или пребывающего во сне. Использование кислорода позволяет получать характеристики регионального кровотока, объема крови, потребления кислорода. Однако и кислород, и глюкоза попадают в мозг с током крови, изменение которого происходит иногда в течение нескольких минут. Поэтому бы-стропротекающие процессы пока этим методом фиксировать не удается.
|