Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Энтропия. Энергия Гиббса





Второй термодинамической функцией состояния является энтропия – функция, ответственная за неупорядоченность состояния данной химической системы: чем большей хаотичностью и беспорядком (т.е. большей неупорядоченностью) характеризуется данная система, тем больше величина энтропии. Энтропия обозначается латинской буквой S и измеряется в Дж/K.

Второй закон термодинамики заключается в утверждении о том, что все самопроизвольно протекающие процессы сопровождаются увеличением суммарной энтропии системы и ее окружения. Иными словами, в любой изолированной системе с течением времени происходит возрастание степени беспорядка (энтропии).

Энтропия пропорциональна так называемой термодинамической вероятности W, определяемой через число микросостояний, с помощью которых можно осуществить данное макросостояние, согласно формуле Больцмана

S = k ln W,

где k - константа Больцмана.

Так как энтропия является функцией состояния системы, ее изменение в процессе химической реакции также можно определить по следствию из закона Гесса. Обычно вычисляют стандартное изменение энтропии Δ rS 0, используя таблицы термодинамических величин, в которых приведены стандартные энтропии веществ при Т = 298 К:

Δ rS 0298 = ∑(n прод.∙ S 0прод.) – ∑(n исх.в-в ∙ S 0исх.в-в).

В изолированной системе знак изменения энтропии является критерием направленности самопроизвольного процесса: если Δ rS > 0, то возможно самопроизвольное протекание процесса в прямом направлении; если Δ rS < 0, прямой процесс термодинамически невозможен, самопроизвольно может протекать лишь обратный процесс; если Δ rS = 0, система находится в состоянии термодинамического равновесия.

В закрытых системах в изобарно-изотермических или изохорно-изотермических условиях критерием направленности самопроизвольного процесса является знак изменения энергии Гиббса (изобарно-изотермического потенциала – Δ G) или энергии Гельмгольца (изохорно-изотермического потенциала – Δ F) в системе. Изменения соответствующих функций определяются следующими выражениями:

Δ G = Δ НТ Δ S;

Δ F = Δ UТ Δ S.

Химическая реакция принципиально возможна в изобарно-изотермических условиях, если энергия Гиббсауменьшается, т.е.Δ G <0. Если Δ G >0, прямой процесс термодинамически невозможен, возможен процесс в обратном направлении. Равенство Δ G = 0 является условием химического равновесия. Соответственно, изохорно-изотермический процесс возможен при Δ F < 0, невозможен при Δ F > 0, система находится в термодинамическом равновесии при Δ F = 0.

Стандартную энергию Гиббса реакции как функцию состояния рассчитывают по следствию из закона Гесса:

Δ rG 0298 = ∑(n прод.∙Δ f G 0298 прод.) – ∑(n исх.в-в ∙Δ f G 0298 исх.в-в).

Значения стандартных энергий Гиббса образования химических соединений (Δ fG 0298) приведены в таблицах термодинамических величин. Δ fG 0298 простых веществ в стандартных состояниях и устойчивых модификациях равны нулю.

 

Примеры решения задач

Пример 1. Вычислите тепловой эффект образования NH3 из простых веществ при стандартном состоянии по тепловым эффектам реакций:

2 + О2 = 2Н2О(Ж); Δ rН 01= –571,68 кДж, (1)
4 NH3 + 3О2 = 6Н2О(Ж) + 2N2; Δ rН 02= –1530,28 кДж. (2)

Решение

Запишем уравнение реакции, тепловой эффект которой необходимо определить:

1/2 N2 + 3/2 Н2 = NH3 (3)

 

Из закона Гесса следует, что термохимические уравнения можно складывать, вычитать и умножать на численные множители. Воспользуемся этим выводом и скомбинируем уравнения (1) и (2) таким образом, чтобы получить искомое уравнение (3).

В уравнения (1) и (2) входят Н2О(Ж) и О2, которые не входят в уравнение (3), поэтому, чтобы исключить их из уравнений (1) и (2), умножим уравнение (1) на 3 (так как в уравнении (1) Н2О(Ж) и О2 в 3 раза меньше, чем в уравнении (2)) и вычтем из него (2) (при этом NH3 и N2 окажутся в нужных частях искомого уравнения):

 

2 + 3О2 – 4 NH3 – 3О2 = 6Н2О(Ж) – 6Н2О(Ж) –2 N2 (4)

 

После преобразования уравнения (4) и деления его на 4 получаем искомое уравнение (3). Аналогичные действия проделываем с соответствующими тепловыми эффектами:

rН 01∙3 – Δ rН 02): 4 = Δ rН 03.

Таким образом,

Δ rН 03 = Δ fН 0298(NH3) = [–571,68 ∙ 3 – (– 1530,28)]: 4 =

= – 46,19 кДж/моль.

Пример 2. Найти тепловой эффект реакции

Al2O3 + 3SО3 = Al2(SO4)3







Дата добавления: 2015-12-04; просмотров: 265. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия