Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Энергетика экосистем.





Говоря о потоках вещества и энергии, следует четко определиться в этих терминах:
Поток вещества - перемещение последнего в форме химических элементов и их соединений от продуцентов к редуцентам (через консументы или без них).
Поток энергии - переход энергии в виде химических связей органических соединений (пищи) по цепям питания от одного трофического уровня к другому (более высокому).
Следует указать, что в отличие от веществ, которые постоянно циркулируют по разным блокам экосистемы и всегда могут вновь входить в круговорот, поступившая энергия может быть использована только один раз.
Как универсальное явление природы, односторонний приток энергии обусловлен действием законов термодинамики. Согласно первому из них: энергия может переходить из одной формы (энергия света) в другую (потенциальную энергию пищи), но она никогда не создается вновь и не исчезает бесследно. Второй же закон термодинамики утверждает, что не может быть ни одного процесса, связанного с превращением энергии, без потери некоторой ее части, По этой причине не может быть превращений, например, пищи в вещество, из которого состоит тело организма, идущих со 100% эффективностью.
Таким образом, функционирование всех экосистем определяется постоянным притоком энергии, которая необходима всем организмам для поддержания их существования и самовоспроизведения.
При изучении развития экосистем следует учитывать и конкурентные отношения. В этом аспекте большой интерес представляет закон максимизации энергии (Г. Одум - Э. Одум):

В соперничестве с другими экосистемами выживает (сохраняется) та из них, которая наилучшим образом способствует поступлению энергии и использует максимальное ее количество наиболее эффективным способом.

Авторы данного закона пишут: <<с этой целью система: 1) создает накопители (хранилища) высококачественной энергии (например, запасы жира); 2) затрачивает определенное количество накопленной энергии на обеспечение поступления новой энергии; 3) обеспечивает круговорот различных веществ; 4) создает механизмы регулирования, поддерживающие устойчивость системы и ее способность к приспособлению к изменяющимся условиям; 5) налаживает с другими системами обмен, необходимый для обеспечения потребности в энергии специальных видов>>,
Необходимо подчеркнуть важное обстоятельство: закон максимизации энергии справедлив и в отношении информации, следовательно его возможно рассматривать и как закон максимизации энергии и информации с такой формулировкой:

Наилучшими шансами на самосохранение обладает система, в наибольшей степени способствующая поступлению, выработке и эффективному использованию энергии и информации.

Отметим, что максимальное поступление вещества, как такового, еще не гарантирует успеха системе в конкурентной группе других аналогичных систем.
Ранее отмечалось, что между организмами биоценоза возникают и устанавливаются прочные пищевые взаимоотношения или цепь питания. Последняя состоит из трех основных звеньев: продуцентов, консументов и редуцентов.
Цепи питания, начинающиеся с фотосинтезирующих организмов, называют цепями выедания (или пастбищными), а цепи, которые начинаются с отмерших остатков растений, трупов и экскрементов животных - детритными цепями.
Место каждого звена в цепи питания называют трофическим уровнем, он характеризуется различной интенсивностью протекания потока веществ и энергии.
Первый трофический уровень - это всегда продуценты; растительноядные консументы относятся ко второму трофическому уровню; плотоядные, живущие за счет растительноядных форм - к третьему; потребляющие других плотоядных - соответственно к четвертому и т.д.
Поэтому различают консументов первого, второго, третьего и четвертого порядков, занимающих разные уровни в цепях питания.
Очевидно, что основную роль при этом играет пищевая специализация консументов. Виды с широким спектром питания могут включаться в цепи питания на разных трофических уровнях. В рацион, например, человека входит как растительная пища, так и мясо травоядных и плотоядных животных. Поэтому он выступает в разных пищевых цепях в качестве консумента первого, второго или третьего порядков.
Так как при передаче энергии с одного уровня на другой происходит ее потеря, цепь питания не может быть длинной. Обычно она состоит из 4-6 звеньев.
Например, хищники, питающиеся различными растительноядными и плотоядными животными, являются звеньями многих цепей. Вследствие этого в каждом биоценозе исторически формируются комплексы цепей питания, представляющие собой единое целое. Подобным образом создаются сети питания, которые отличаются большой сложностью.
Таким образом, можно сделать вывод о том, что пищевая цепь - основной канал переноса энергии в экосистемах.
Благодаря сложности трофических связей выпадение какого-то одного вида нередко почти не сказывается на экосистеме. Пищу исчезнувшего вида начинают потреблять другие,,пользователи'', питавшиеся им виды находят новые источники пищи, и в целом в сообществе сохраняется равновесие.
Рассмотрим как и в каком соотношении передается энергия, заключенная в растительной пище по цепям питания.
В ходе фотосинтеза растения связывают в среднем лишь около 1% попадающей на них солнечной энергии. Животное, которое съело растение, часть пищи не переваривает и выделяет в виде экскрементов. Обычно усваивается 20-60% растительного корма, усвоенная энергия идет на поддержание жизнедеятельности животного. Функционирование клеток и органов сопровождается выделением тепла, то есть тем самым существенная доля энергии пищи вскоре рассеивается в окружающей среде. Сравнительно небольшая часть пищи идет на построение новых тканей и создание жировых запасов. Далее, хищник, съевший растительноядное животное и представляющий третий трофический уровень, получает только ту энергию из накопленной растением, которая задержалась в теле его жертвы (второй уровень) в виде прироста биомассы.
Расчеты показали, что на каждом этапе передачи вещества и энергии по пищевой цепи теряется примерно 90% энергии и только около одной десятой доли ее переходит к очередному потребителю. Указанное правило передачи энергии в пищевых связях организмов называют,,правилом десяти процентов'' (принцип Ливдемана). Например, количество энергии, которая доходит до третичных плотоядных (пятый трофический уровень), составляет лишь около 0,0004% энергии, поглощенной продуцентами. Это и объясняет ограниченное количество (5-6) звеньев (уровней) в пищевой цепи независимо от сложности видового состава биогеоценоза.
Рассматривая поток энергии в экосистемах, легко понять так же почему с повышением трофического уровня биомасса снижается. Здесь работает энергетический закон экосистем:

Чем больше биомасса популяции, тем ниже должен быть, занимаемый ею трофический уровень, или иначе: на конце длинной пищевой цепи не может быть большой биомассы.

 

53. Продуценты. Продуктивность особи и популяции одного и разных видов.

Продуценты — организмы, способные синтезировать органические вещества из неорганических, то есть, все автотрофы. Это, в основном, зелёные растения(синтезируют органические вещества из неорганических в процессе фотосинтеза), однако некоторые виды бактерий-хемотрофов способны на чисто химический синтез органики без солнечного света.

Продуценты являются первым звеном пищевой цепи.

 

54. Консументы.

Консументы — гетеротрофы, организмы, потребляющие готовые органические вещества, создаваемые автотрофами (продуцентами). В отличие от редуцентов, консументы не способны разлагать органические вещества до неорганических.

К консументам относят животных, некоторые микроорганизмы, а также паразитические инасекомоядные растения. Классифицируют консументов первого, второго и других порядков, так как на каждом этапе передачи вещества и энергии в трофической цепи теряется до 90 %, экологические пирамиды редко состоят из более чем четырёх порядков консументов.

Консументы первого порядка (первичные консументы) — растительноядные гетеротрофы (травоядные животные, паразитические растения), питаются непосредственно продуцентамибиомассы.

Консументы второго порядка — хищные гетеротрофы (хищники, паразиты хищников), питаются консументами первого порядка.

Отдельно взятый организм может являться в разных трофических цепях консументом разных порядков, например, сова, поедающая мышь, является одновременно консументом второго и третьего порядка, а мышь — первого и второго, так как мышь питается и растениями, и растительноядными насекомыми.

Любой консумент является гетеротрофом, так как не способен синтезировать органические вещества из неорганических. Термин «консумент (первого, второго и так далее) порядка» позволяет более точно указать место организма в цепи питания. Редуценты (например, грибы, бактерии гниения) также являются гетеротрофами, от консументов их отличает способность полностью разлагать органические вещества (белки, углеводы, липиды и другие) до неорганических (углекислый газ, аммиак, мочевина, сероводород), завершая круговорот веществ в природе, создавая субстрат для деятельности продуцентов (автотрофов).

 

55. Редуценты.

Редуце́нты (лат. reductio — восстанавливать; также деструкторы, сапротрофы) — микроорганизмы (бактерии и грибы), разрушающие отмершие остатки живых существ, превращая их в неорганические и простейшие органические соединения.

От животных-детритофагов редуценты отличаются прежде всего тем, что не оставляют твёрдых непереваренных остатков (экскрементов). Животных-детритофагов в экологии традиционно относят к консументам. В то же время все организмы выделяют углекислый газ и воду, а часто и другие неорганические (аммиак) или простые органические (мочевина) молекулы и таким образом принимают участие в разрушении (деструкции) органического вещества.

 

56. Динамика экосистем. Циклические изменения.

Динамика экосистем

Сложение экосистем — динамический процесс. В экосистемах постоянно происходят изменения в состоянии и жизнедеятельности их членов и соотношении популяций. Многообразные изменения, происходящие в любом сообществе, относят к двум основным типам: циклические и поступательные.

Циклические изменения сообществ отражают суточную, сезонную и многолетнюю периодичность внешних условий и проявления эндогенных ритмов организмов. Суточная динамика экосистем связана главным образом с ритмикой природных явлений и носит строго периодический характер. Нами уже было рассмотрено, что в каждом биоценозе имеются группы организмов, активность жизни у которых приходится на разное время суток. Одни активны днем, другие — ночью. Отсюда в составе и в соотношении отдельных видов биоценоза той или иной экосистемы происходят периодические изменения, так как отдельные организмы на определенное время выключаются из него. Суточную динамику биоценоза обеспечивают как животные, так и растения. Как известно, у растений в течение суток изменяются интенсивность и характер физиологических процессов — ночью не происходит фотосинтез, нередко у растений цветки раскрываются только в ночные часы и опыляются ночными животными, другие приспособлены к опылению днем. Суточная динамика в биоценозах, как правило, выражена тем сильнее, чем значительнее разница температур, влажности и других факторов среды днем и ночью.

Более значительные отклонения в биоценозах наблюдаются при сезонной динамике. Это обусловлено биологическими циклами организмов, которые зависят от сезонной цикличности явлений природы. Так, смена времени года значительное влияние оказывает на жизнедеятельность животных и растений (спячка, зимний сон, диапауза и миграции у животных; периоды цветения, плодоношения, активного роста, листопада и зимнего покоя у растений). Сезонной изменчивости подвержена нередко и ярусная структура биоценоза. Отдельные ярусы растений в соответствующие сезоны года могут полностью исчезать, например, состоящий из однолетников травянистый ярус. Длительность биологических сезонов в разных широтах неодинакова. В связи с этим сезонная динамика биоценозов арктической, умеренной и тропической зон различна. Она выражена наиболее четко в экосистемах умеренного климата и в северных широтах.

Многолетняя изменчивость является нормальной в жизни любого биоценоза. Так, количество осадков, выпадающих в Барабинской лесостепи, резко колеблется по годам, ряд засушливых лет чередуется с многолетним периодом обилия осадков. Тем самым оказывается существенное влияние на растения и животных. При этом происходит выработка экологических ниш —функциональное размежевание в возникающем множестве или его дополнение при малом разнообразии.

Многолетние изменения в составе биоценозов повторяются и в связи с периодическими изменениями общей циркуляции атмосферы, в свою очередь, обусловленной усилением или ослаблением солнечной активности.

В процессе суточной и сезонной динамики целостность биоценозов обычно не нарушается. Биоценоз испытывает лишь периодические колебания качественных и количественных характеристик.

Поступательные изменения в экосистеме приводят в конечном итоге к смене одного биоценоза другим, с иным набором господствующих видов. Причинами подобных смен могут являться внешние по отношению к биоценозу факторы, действующие длительное время в одном направлении, например увеличивающееся загрязнение водоемов, возрастающее в результате мелиорации иссушение болотных почв, усиленный выпас скота и т. д. Данные смены одного биоценоза другим называют экзогенети-ческими. В том случае, когда усиливающее влияние фактора приводит к постепенному упрощению структуры биоценоза, обеднению их состава, снижению продуктивности, подобные смены называют дигрессивными или дигрессиями.

Эндогенетические смены возникают в результате процессов, которые происходят внутри самого биоценоза. Последовательная смена одного биоценоза другим называется экологической сукцессией (от лат. succession — последовательность, смена). Сукцессия является процессом саморазвития экосистем. В основе сукцессии лежит неполнота биологического круговорота в данном биоценозе. Известно, что живые организмы в результате жизнедеятельности меняют вокруг себя среду, изымая из нее часть веществ и насыщая ее продуктами метаболизма. При сравнительно длительном существовании популяций они меняют свое окружение в неблагоприятную сторону и как результат — оказываются вытесненными популяциями других видов, для которых вызванные преобразования среды оказываются экологически выгодными. В биоценозе происходит таким образом смена господствующих видов. Здесь четко прослеживается правило (принцип) экологического дублирования (рис. 12.35). Длительное существование биоценоза возможно лишь в том случае, если изменения среды, вызванные деятельностью одних живых организмов благоприятны для других, с противоположными требованиями.

 

надежности биотических систем в биосфере

(по Н. Ф. Реймерсу, 1994):

1, 2, З... — потоки энергии через виды; а-а... — связи между ними, А — состояние до исчезновения вида; Б — вид 3 исчез, проходившие через него потоки энергии идут через дублирующие виды 2 и 4

 

На основе конкурентных взаимодействий видов в ходе сукцессии происходит постепенное формирование более устойчивых комбинаций, соответствующих конкретным абиотическим условиям среды. Пример сукцессии, приводящей к смене одного сообщества другим, — зарастание небольшого озера с последующим появлением на его месте болота, а затем леса.

Вначале по краям озера образуется сплавна — плавающий ковер из осок, мхов и других растений. Постоянно озеро заполняется отмершими остатками растений — торфом. Образуется болото, постепенно зарастающее лесом. Последовательный ряд постепенно и закономерно сменяющих друг друга в сукцессии сообществ называется сукцессионной серией.

Сукцессии в природе чрезвычайно разномасштабны. Их можно наблюдать в банках с культурами, представляющими собой планктонные сообщества — различные виды плавающих водорослей и их потребителей —коловраток, жгутиковых в лужах и прудах, на заброшенных пашнях, выветрившихся скалах и др. В организации экосистем иерархичность проявляется и в сукцессионных процессах — более крупные преобразования биоценозов складываются из более мелких. В стабильных экосистемах с отрегулированным круговоротом веществ также постоянно осуществляются локальные сукцессионные смены, поддерживающие сложную внутреннюю структуру сообществ.

 

57. Экологические сукцессии. Климакс.







Дата добавления: 2015-12-04; просмотров: 107. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия