Повторные независимые испытания. Формула Бернулли с выводом. Примеры
Если вер-ть наступления события А в каждом испытании не меняется в завис-ти от исходов других, то такие испытания наз-ся независ-ми относит-но события А. Если независ-е повторные испытания проводятся при одном и том же комплексе условий, то вер-ть наступления соб-я А в каждом испытании одна и та же. Последовательность испытаний, в кот 1 и те же события происходят с одинаковой вер-ю, наз последовательностью независ-х испытаний. А соб, кот может иметь место с вер-ю Р(А) в любом из n испытаний. А ->P(A) P(A)=P – вер-ть осущ-я события в каждом отдельном событии - вер-ть неоосущ-я событий; ; ; Поставим задачу опр-я вер-ти m-кратного осуществл-я события А в серии из n испытаний. Pm,n – вер-ть m-кратного осуществл-я события в серии n испытаний. Условно рез-ты послед-ти независ-х испытаний м\б представлены: , тк в послед-ти независ-х испытаний, каждое из соб независимо и для m-кратного осуществл события они должны произойти совместно, соотв-я вер-ть опр-ся по ф-ле вер-ти произведения . Предполагая, что возможен и др порядок следования А и на множестве n испытаний, а кол-во комбинаций = , получим ф-лу m-кратного осуществ-я соб А в серии из n испытаний: à Формула Бернулли. Используется при усл, что соб происх-т многократно. Теорема: Если вер-ть А в каждом испытании постоянна, то вер-ть Pm,n того, что событие А наступит m раз в n независимых испытаниях, равна , где q=1-p ф Бернулли применяется в тех случаях, когда число опытов невелико, а вероятности появления достаточно велики.
8. Локальная теорема Муавра-Лапласа, условия её применимости. Св-ва ф-ии f(x). Пример. Аналогом ф Бернулли является локальная ф Муавра-Лапласа, она асимптотическая (ф-ла, точность кот при оценке расм-го параметра возрастает с увеличением аргумента). Локальная теорема Муавра – Лапласа Вероятность того, что в n независимых испытаниях, в каждом из которых вероятность появления события равна р (0<p<1), событие наступит ровно m раз, приближенно равна (тем точнее, чем больше n). , где Р -вер-ть осущ-я события в отдельном испытании, q - вер-ть неосущ-я события в отдельном испытании, n – кол-во испытаний, , m – кол-во испытаний, в кот данное событие имеет место. ф-я явл-ся табличной функцией. Использование таблиц предполагает правила: 1. ; 2. - убывающая; 3. Четность ; 4. Для всех х>5 à Пример Заявки, расм-ые фирмой удовлетв-ся в 30% случаях. Представлено 200 заявок. Найти в-ть т\ч не будет удовлетв-но 130 заявок из 200. Условие: n=200; m=130; P=0,7(70%); q=0,3(30%). -? Решение В лок ф Муавра-Лапласа , тогда подставляем -1,54 в ф-лу (1,54 ищем по таблице) 9. Асимптотическая ф-ла Пуассона и условия её применимости. Пример. Ф-ла Пуассона характеризует вер-ть m-кратного осуществ-го события в серии из n испытаний, при условии, когда кол-во испытаний велико, а в-ть осуществ-я события в каждом из испытаний весьма мала, но т\о что np<10. При этом условии имеет место табличная формула Пуассона: ,где n- велико, p- мало, =np, np<10. Ф-я Рm,n опред-ая ф Пуассона явл-ся табличной ф-ей, позволяющая находить значение вер-ей по заданным значениям m, n, p. Пример: Электронная система состоит из 2000 эл-в, вероятность отказа каждого из кот сост 0,001. Найти: а) Вер-ть отказа любых 2х Эл-в системы б) вер-ть отказа более 2х Эл-в. Решение: Поскольку кол-во испытаний(число Эл-в системы) в д\сл велико(2000), а в-ть наступления события (отказ Эл-в) мало (0,001) р=0,001 (вер-ть отказа 1 эл-та); nр=2000; 0,001=2<10, то для нахождения вер-ти ипольз-м ф Пуассона. а) m=2; =np=2; Чем больше множество, тем больше вер-ть. б)
10. Интегральная теорема Муавра-Лапласа и условия её применимости. Функция Лапласа f(x) и её свойства. Пример. Предельная теорема Муавра — Лапласа:Пусть событие А может произойти в любом из n независимых испытаний с одной и той же вероятностью Р и пусть — число осуществлений события А в n испытаниях. Тогда при n à∞;т.е. для любых вещественных x<y имеет место сходимость Доказательство: Величина есть сумма независимых, одинаково распределённых случайных величин, имеющих распределение Бернулли с параметром, равным вероятности успеха : , где ; ; Особый вид асимпт-х формул представляет интегральная функ Муавра-Лапласа, а также следствия из неё. Инт ф М-Л позволяет находить вер-ть т\ч число повторений события m в серии из n испытаний не выдет за границы заданного интервала . Данная вер-ть выр-ся формулой: , где ; Интегр. Функция Лапласа: ; Интегральная функция Лапласа явл-ся табличной. Структура аналогична структуре локальной ф-ии Муавра-Лапласа. Осн свойства: С1: Ф(0)=0˚; С2: Ф(х)↑ - возрастающая; С3: Ф(-х)= - Ф(х) – нечетная; С4: при х≥5 Ф(х)=1 Пример:Вер-ть т\ч покупателю нужна обувь 36 размера =0,3. Найти в-ть т\ч среди 2000 покупателей нуждающихся в обуви 36 размера окажется не менее 575. Решение:m – покуп, кот купят 36 р; n=2000; 575≤m≤2000; Р=0,3; q=0,7 (обрат 0,3); Р(575≤m≤2000) -? Для реш задачи посредством интегр фМ-Л определим х1 и х2 ; ; х1 и х2 подставляем в интегр ф-лу:
Р(575≤m≤2000) =0,5(Ф(68)-Ф(-1,22))=0,5(Ф(68)+Ф(1,22))=0,5(1+0,775)= 0,89 (по С4).
|