Повторные независимые испытания. Формула Бернулли с выводом. Примеры
Если вер-ть наступления события А в каждом испытании не меняется в завис-ти от исходов других, то такие испытания наз-ся независ-ми относит-но события А. Если независ-е повторные испытания проводятся при одном и том же комплексе условий, то вер-ть наступления соб-я А в каждом испытании одна и та же. Последовательность испытаний, в кот 1 и те же события происходят с одинаковой вер-ю, наз последовательностью независ-х испытаний. А соб, кот может иметь место с вер-ю Р(А) в любом из n испытаний. А ->P(A) P(A)=P – вер-ть осущ-я события в каждом отдельном событии
Поставим задачу опр-я вер-ти m-кратного осуществл-я события А в серии из n испытаний. Pm,n – вер-ть m-кратного осуществл-я события в серии n испытаний. Условно рез-ты послед-ти независ-х испытаний м\б представлены: Теорема: Если вер-ть А в каждом испытании постоянна, то вер-ть Pm,n того, что событие А наступит m раз в n независимых испытаниях, равна
8. Локальная теорема Муавра-Лапласа, условия её применимости. Св-ва ф-ии f(x). Пример. Аналогом ф Бернулли является локальная ф Муавра-Лапласа, она асимптотическая (ф-ла, точность кот при оценке расм-го параметра возрастает с увеличением аргумента). Локальная теорема Муавра – Лапласа Вероятность того, что в n независимых испытаниях, в каждом из которых вероятность появления события равна р (0<p<1), событие наступит ровно m раз, приближенно равна (тем точнее, чем больше n). Пример Заявки, расм-ые фирмой удовлетв-ся в 30% случаях. Представлено 200 заявок. Найти в-ть т\ч не будет удовлетв-но 130 заявок из 200. Условие: n=200; m=130; P=0,7(70%); q=0,3(30%). Решение В лок ф Муавра-Лапласа 9. Асимптотическая ф-ла Пуассона и условия её применимости. Пример. Ф-ла Пуассона характеризует вер-ть m-кратного осуществ-го события в серии из n испытаний, при условии, когда кол-во испытаний велико, а в-ть осуществ-я события в каждом из испытаний весьма мала, но т\о что np<10. При этом условии имеет место табличная формула Пуассона: Пример: Электронная система состоит из 2000 эл-в, вероятность отказа каждого из кот сост 0,001. Найти: а) Вер-ть отказа любых 2х Эл-в системы б) вер-ть отказа более 2х Эл-в. Решение: Поскольку кол-во испытаний(число Эл-в системы) в д\сл велико(2000), а в-ть наступления события (отказ Эл-в) мало (0,001) р=0,001 (вер-ть отказа 1 эл-та); nр=2000; 0,001=2<10, то для нахождения вер-ти ипольз-м ф Пуассона. а) m=2; Чем больше множество, тем больше вер-ть. б)
10. Интегральная теорема Муавра-Лапласа и условия её применимости. Функция Лапласа f(x) и её свойства. Пример. Предельная теорема Муавра — Лапласа:Пусть событие А может произойти в любом из n независимых испытаний с одной и той же вероятностью Р и пусть Доказательство: Величина Особый вид асимпт-х формул представляет интегральная функ Муавра-Лапласа, а также следствия из неё. Инт ф М-Л позволяет находить вер-ть т\ч число повторений события m в серии из n испытаний не выдет за границы заданного интервала Интегр. Функция Лапласа: Пример:Вер-ть т\ч покупателю нужна обувь 36 размера =0,3. Найти в-ть т\ч среди 2000 покупателей нуждающихся в обуви 36 размера окажется не менее 575. Решение:m – покуп, кот купят 36 р; n=2000; 575≤m≤2000; Р=0,3; q=0,7 (обрат 0,3); Р(575≤m≤2000) -? Для реш задачи посредством интегр фМ-Л определим х1 и х2
Р(575≤m≤2000) =0,5(Ф(68)-Ф(-1,22))=0,5(Ф(68)+Ф(1,22))=0,5(1+0,775)= 0,89 (по С4).
|