Непрерывная случайная величина (НСВ). Вероятность отдельного взятого значения НСВ. Математическое ожидание и дисперсия НСВ. Функция распределения НСВ
Сл\в Х наз-ся непрерывной, если её Функция Распределения непрерывна в любой точке и дифференцируемая во всюду, кроме отдельных точек (точки излома). Мат\ожиданием дискретной сл\в называется сумма произведений всех возможных значений сл\в на их вероятности. Мат\о существует, если ряд, стоящий в правой части равенства, сходится абсолютно. С точки зрения вер-ти можно сказать, что м\о приближенно = среднему арифметическому наблюдаемых значений сл\в. Пусть НСВ Х задана ФР F(x). Допустим, что все возможные значения сл\в принадлежат отрезку [a,b]. Мат\ож-м НСВ Х, возможные значения которой принадлежат отрезку [a,b], наз-ся определенный интеграл . Если возможные значения сл\в рассм-ся на всей числовой оси, то мат\о нах по формуле: , при этом предпол-ся, что несобственный интеграл сходится. Дисперсией НСВ наз мат\ож квадрата ее отклонения. . По аналогии с дисперсией, дискретной сл\в, для практического вычисления дисперсии используется формула: . Функция распределения НСВ: , в качестве способа задания НСВ используется функция распределения НСВ. ФРНСВ наз вер-ть т\ч она примет значение меньшее заданного. -обознач ф-ии распр в-тей à Основные свойства ф-ии распределения НСВ: С1. С2. С3. С4. Вер-ть т\ч НСВ примет значение из интервала, равна приращению ф-ии на этом интервале 1) 2)
20. Плотность вероятности НепрерывныхСВ, её определение, свойства. Кривая распределения. Связь между функцией распределения и плотностью вероятности НСВ. Математическое ожидание и дисперсия НСВ. Скорость изменения функции распределения хар-ся плотностью распр-я. Обозначается символом . Плотностью вер-ти (плотностью распр-я) НСВ Х наз-ся производная её ф-ии распр-я Свойства плотности распр-я (ПР): С1. ПР – неотрицательная функция. ; С2. Вер-ть попадания НСВ в интервал [a,b] равна определённому интегралу от её плотности вер-ти в пределах от a до b, т.е. С3. Ф-я распр НСВ м\б выражена через плотность вер-ти по формуле: С4. Несобственный интеграл в бесконечных пределах от плотности вер-ти НСВ =1. Из выражений, связывающих плотность и функцию распределения следует, что м\у ними существует взаимно однозначное соответствие, те каждое из них определяет выражение другой. Плотность вер-ти, как и ф-ция рапр-я явл-ся одной из форм закона распределения, но в отличии от ф-ции рапр, она существует только для НСВ. Плотность вер-ти называют и дифференциальной функцией. График плотности вер-ти называется кривой распределения. ПР составляет основания определения хар-к сл\в: мат\о и дисперсии. Мат\ожиданием НСВ Х, возможные значения которой принадлежат отрезку [a,b], называется определенный интеграл . Если возможные значения сл\в рассматриваются на всей числовой оси, то м\о находится по формуле: . При этом предполагается, что несобственный интеграл сходится. Дисперсией НСВ называется мат\о квадрата ее отклонения. По аналогии с дисперсией дискретной сл\в, для практического вычисления дисперсии используется формула: Мат\о определяется: ,если интеграл абсолютно сходится и , если интеграл сходится. С3 дисперсии имеет вид: или
21. Определение нормального закона распределения. Теорико-вероятный смысл его параметров. Нормальная кривая и зависимость её положения и формы от параметров. Нормальным называется распределение вероятностей непрерывной случайной величины, которое описывается плотностью вероятности . Нормальный закон распр также называется законом Гаусса. НЗР занимает центральное место в теории вероятностей. Это обусловлено тем, что этот закон проявляется во всех случаях, когда сл\в является результатом действия большого числа различных факторов. К НЗ приближаются все остальные законы распределения. Можно легко показать, что параметры и , входящие в плотность распределения являются соответственно мат\ожиданием и средним квадратическим отклонением сл\в Х. Найдем функцию распределения F(x). График плотности нормального распределения называется нормальной кривой или кривой Гаусса. Нормальная кривая обладает следующими свойствами: 1) Функция определена на всей числовой оси. 2) При всех х ф-я распр принимает только положительные значения. 3) Ось ОХ является горизонтальной асимптотой графика плотности вер-ти, т.к. при неограниченном возрастании по абсолютной величине аргумента х, значение функции стремится к нулю. 4) Найдем экстремум функции: ; Т.к. при y’ > 0 при x < m и y’ < 0 при x > m, то в точке х = т функция имеет максимум, равный 5) Функция является симметричной относительно прямой х = а, т.к. разность (х – а) входит в функцию плотности распределения в квадрате. 6) Для нахождения точек перегиба графика найдем вторую производную функции плотности: При x = m + s и x = m - s вторая производная равна нулю, а при переходе через эти точки меняет знак, т.е. в этих точках функция имеет перегиб. В этих точках значение функции равно Построим график функции плотности распределения. Построены графики при т =0 и трех возможных значениях среднего квадратичного отклонения s = 1, s = 2 и s = 7. При увеличении знач среднего квадратичного отклонения график становится более пологим, а максимальное значение уменьшается.. Если а > 0, то график сместится в положительном направлении, если а < 0 – в отрицательном. При а = 0 и s = 1 кривая называется нормированной. Уравнение нормированной кривой:
22. Функция распределения нормальной распределённой сл\величины и её выражение через функцию Лапласа.
|