Доказательство. З а м е ч ан и е. Применив формулу (*) к событию ВА, получим Р (ВА) = Р (В) Рв (А), или, поскольку событие ВА не отличается от события АВ
З а м е ч ан и е. Применив формулу (*) к событию ВА, получим Р (ВА) = Р (В) Рв (А), или, поскольку событие ВА не отличается от события АВ, -> Р(АВ) = Р (В) Рв (А) Сравнивая формулы Р (АВ) = Р (А) РA (В) и Р(АВ) = Р (В) Рв (А), заключаем о справедливости равенства Р (А) Ра (В) = Р (В) Рв (А) С л е д с т в и е. Вероятность совместного появления нескольких событий равна произведению вероятности одного из них на условные вероятности всех остальных, причем вероятность каждого последующего события вычисляется в предположении, что все предыдущие события уже появились: где Пример 1. У сборщика имеется 3 конусных и 7 эллиптических валиков. Сборщик взял один валик, а затем второй. Найти вероятность того, что первый из взятых валиков — конусный, а второй — эллиптический. Р е ш е н и е. Вероятность того, что первый валик окажется конусным (событие A), Р (А) = 3 / 10. Вероятность того, что второй валик окажется эллиптическим (событие В), вычисленная в предположении, что первый валик — конусный, т. е. условная вероятность РA (В) = 7 / 9. По теореме умножения, искомая вероятность Р (АВ) = Р (А) РA (В) = (3 / 10) * (7 / 9) = 7 / 30. Заметим, что, сохранив обозначения, легко найдем: Р (В) = 7 / 10, РB (А) = 3 / 9, Р (В) РB (А) = 7 / 30, что наглядно иллюстрирует справедливость равенства (***).
|