Следствия из интегральной теоремы Муавра-Лапласа с выводом. Примеры
Частными случаями инт т М-Л явл-ся следствием из неё: След1: Если в\ть наступления события в каждом отдельном испытании постоянно и отлично от 0 и 1, а число испыт велико, то событие имело место от np на величину непревосходящую r по абсолютной величине, нах по ф-ле: ; ; ( = ; = ) След2:Если в\ть наступления события в каждом отдельном испытании постоянно и отлично от 0 и 1, а число испыт велико, то событие имело место отклонение частности осуществл-я события от в\ти на величину непревосходящую дельта по абсолютной величине, нах по ф-ле: Пример:Всхожесть семян сост-т 80%, найти в\ть т\ч из 2500 семян, кол-во взошедших не выдет за границы интервала [1900; 2100]. Решение:n=2500-посев; p=0,8-в\ть всхода 80%; q=0,2-в\ть невхода; ; m-np, тогда ; , в следствии r =100, подставляем в ф-лу: (по С4)
12. Понятие случайной величины и её описание. Дискретная сл\в и её закон (ряд) распределения. Независимые сл\в. Примеры. Испытания связ-е с осущ-ем события сопровожд-ся появлением некоторого численного значения - случайной величины. Случайной наз вел, предсказать значение кот заранее невозможно. Случайные величины принято обозначать (X,Y,Z), а соответствующие им значения (x,y,z) Сл/в наз-ся дискретной, если она принимает конечное множество значений. Пусть Х={Х1; Х2;…Хn}- множество значений дискретной сл\вел. Мерой возм-ти появления каждого из данных знач явл соответствие вер\ти, т\о, способом описание сл\в явл соответ-ием м\у значениями сл\в и вер-ми, с кот она принимает указ-е значения. Закон распределения может быть задан аналитически, в виде таблицы или графически. Таблица соответствия знач-й сл\в и их вер-ей называется рядом распределения
Графическое представление этой табл наз-ся многоугольником распределения. При этом сумма всех ординат многоугольника распределения предст-т собой в\ть всех возможных значений сл\в, а, след, =1. Следствие: Из определения закона распределения следует что события (Х=х),…, (Х=хк) –образуют полн. систему. => Р(Х=х1)+…+Р(Х=хк)=1 ßосновное св-во закона распределения. Сл\в наз-ся независимыми, если закон распределения одной из них не зависит от того, какое знач принимает другая сл\в. Условные распределения независ-х сл\в-н = их безусловным распределениям. Для т\ч сл\в Х и Y были независимы, необх, чтобы плотность совместного распределения системы (X, Y) была = произведению плотностей распределения составляющих. f(x,y)=f1(x)*f2(x) Для дискретных сл\в используются формулы: Пример. Последовательно послано 4 радиосигнала. Вер-ти приема каждого из них не зависят от того, приняты ли остальные сигналы, или нет. Вер-ти приема сигналов = соотв-но 0,2, 0,3, 0,4, 0,5. Определить вер-ть приема 3х радиосигналов. Решение:Событие приема 3х сигналов из 4х возможно в 4х случаях: ; ; Для приема 3х сигналов необходимо совершение одного из событий А, В, С или D. Т.о, находим искомую в-ть:
13. Математические операции над дискретными сл\велечинами. Приведите пример построения закона распределения сл\вел Z=X+Y или Z=XY по заданным распределениям X и Y.
Над сл\вел можно выполнять действия, кот состоят в действиях над значениями сл\в и соотв-х операциях над вер-ми. Соответствие действий наз значениями и вер-ми выражается таблицей ß.
Пример:Законы распределения числа бракованных деталей выпускаемые 2мя разными станками выр-ся таблицами:
Построить сл\в Z=X+Y Решение:
à
14. Математическое ожидание дискретной случ\вел и его свойства с выводом. Примеры. Матем ожиданием дискретной сл\в наз сумма произведений всех возможных значений сл\в на их вероятности. Матем ожид сущ-т, если ряд, стоящий в правой части равенства, сходится абсолютно. С точки зрения вер-ти можно сказать, что матем ожид приближенно равно среднему арифм-му наблюд-х значений сл\в. Свойства математического ожидания: 1) Мат ожид постоянной величины равно самой постоянной. 2) Постоянный множитель можно выносить за знак мат-го ожид. 3) Мат ожид произведения 2х независ-х сл\в-н = произведению их матем-х ож-й. Это свойство справедливо для произвольного числа сл\в. 4) Мат ожид суммы 2х сл\в = сумме мат ожид-й слагаемых. Это свойство также справедливо для произвольного числа сл\в. Пусть производится п независимых испытаний, вероятность появления события А в которых равна р. Теорема. Мат ожид М(Х) числа появления события А в п независимых испытаниях = произведению числа испытаний на вер-ть появления события в каждом испытании. Однако, мат ожид не может полностью характеризовать случайный процесс. Кроме мат-го ожид надо ввести величину, которая хар-т отклонение значений сл\в от мат-го ожидания. Это отклонение равно разности между сл\в и ее мат-м ожид. При этом мат-е ожид отклонения = 0. Это объясняется тем, что одни возможные отклонения положительны, другие отрицательны, и в результате их взаимного погашения получается 0.
15. Дисперсия дискретной случ\вел и её свойства с выводом. Примеры. Дисперсией (рассеиванием) дискретной сл\в наз мат ожид квадрата отклонения сл\в от ее мат ожид. Теорема. Дисперсия равна разности между мат-м ожид квадрата сл\в Х и квадратом ее мат-го ожид. Доказательство. С учетом того, что мат ожид М(Х) и квадрат мат-го ожид М2(Х) – величины постоянные, можно записать:
Свойства дисперсии С1. Дисперсия постоянной величины равна нулю. С2. Постоян множитель можно выносить за знак дисперсии, возводя его в квадрат. С3. Дисперсия суммы 2х независимых сл\в = сумме дисперсий этих величин. С4. Дисперсия разности 2х независимых сл\в = сумме дисперсий этих величин. Справедливость этого равенства вытекает из свойства 2. С5. Дисперсия = мат ожид квадрата сл\в без квадрата мат ожид. Доказательство С5: Использовние С5, значит-но упрощает процесс нахожд-я дисперсии по отнош-ю использ-я опр-я, поэтомк, в кач ф-лы нахожднеия дисперсии, использ-ся С5 дисперсии. Теорема. Дисперсия числа появления события А в п независимых испытаний, в каждом из кот вер-ть р появления события постоянна, = произведению числа испытаний на вер-ти появления и не появления события в каждом испытании.
16. Математическое ожидание и дисперсия числа m и частности m\n наступлений события в n-повторных независимых испытаниях, с выводом. Дискретная сл\в Х имеет гипергеометрическое распределение, если она принимает значения 1,2,3,,…min (n,M)с вер-ми , где m=0,1,2,…min (n;M), - натуральные числа. Гипергеометрическое распр имеет сл\в Х=m – число объектов, обладающих заданным св-м, среди n объектов, случайно извлечённых из совокупности N объектов, M из кот-х обладают этим свойством. Теорема. Мат\ожидание сл\в Х, имеющей гипергеометрическое рапр-е с параметрами n,M,N, есть , а её дисперсия . Сл\в Х=m, распределённую по биномиальному закону, можно интерпретировать как число m объектов, обладающих данным св-м, из общего числа n объектов, случайно извлечённых из некоторой воображаемой бесконечной совокупности, доля p объектов которой обладает этим св-м. Поэтому гипергеометричесоке рапр можно расм-ть как модификацию биномиального распр-я для случая конечной совокупности, состоящей из N объектов, М из кот обладают этим св-м.
17. Случайная величина, распределённая по биномиальному закону, её математическое ожидание и дисперсия. Закон распределения Пуассоана. Биномиальным наз-ся распределение сл\в, в кот она принимает последовательность целых неотрицательных значений с вер-ми определяемыми по формуле Бернулли. мат\о и дисперсия биномиально распределённой сл\величины. Законом распределения Пуассона наз распр-е сл\в, в кот она принимает последовательность целых неотрицательных значений с вер-ми определ-ся по формуле Пуассона. Если имеет место распределение Пуассона заданного распр-я , то мат\о находится Распределение Пуассона. Пусть производится n независимых испытаний, в кот появление соб А имеет в-ть р. Если число испытаний n достаточно велико, а в-ть появления соб А в каждом испытании мало, то для нахождения в-ти появления события А k раз находится след образом: Произведение np сохраняет постоянное значение: , это означает, что среднее число появления соб в различных сериях испытаний (при разном n) остается неизменным. По формуле Бернулли получаем: ; Найдем предел этой вероятности при n à ∞;. Получаем формулу распределения Пуассона:
18. Функция и распределения случайной величины, её определение, свойства и график. Функцией распределения сл\в Х наз-ся ф-я F(x), выражающая для каждого х вер-ть т\ч сл\в Х примет значение, меньшее х. ФР также наз интегральной ф-ей распр-я. ФР любой дискретной сл\в есть разрывная ступенчатая ф-я, скачки кот происходят в точках, соотв-х возможным значениям сл\в и равны вер-м этих значений. Сумма всех скачков ф F(X) =1. Она полностью характеризует сл\в и явл-ся одной из форм закона распределения. Для дискретной сл\в ф-я распр-я имеет вид: Знак неравенства под знаком суммы показывает, что суммирование распр-ся на те возможные знач сл\в, кот меньше аргумента х. Ф-я распр-я дискретной сл\в Х разрывна и возрастает скачками при переходе через каждое значение хi.
|