Функция Лапласа
Найдем в-ть попадания сл\в, распределенной по нормальному закону, в заданный интервал. Обозначим ; ; Тогда . Т.к. интеграл не выражается через элементарные функции, то вводится в рассмотрение функция , кот наз ф-ей Лапласа или интегралом вероятностей. Значения этой ф-ии при различных знач х посчитаны и приводятся в специальных таблицах. График функции Лапласа.
Ф-я Лапласа обладает следующими свойствами: 1) Ф(0) = 0; 2) Ф(-х) = - Ф(х); 3) Ф(¥) = 1. Ф-ю Лапласа также называют ф-ей ошибок и обозначают erf x.
23. Формулы для определения вероятности: а)попадания нормально распределённой сл\вел в заданный интервал; б) её отклонения от математического ожидания. Правило «трёх сигм». а) Найдем в-ть попадания сл\в, распределенной по нормальному закону, в заданный интервал. Обозначим ; ; Тогда . Т.к. интеграл не выражается через элементарные функции, то вводится в рассмотрение функция , кот наз ф-ей Лапласа или интегралом вероятностей. Значения этой ф-ии при различных знач х посчитаны и приводятся в специальных таблицах. б) В-ть того что отклонение сл\в от её мат\ожидания по абсолютной величине превзойдёт не больше дроби, числ кот – дисперсия сл\в, а знаменатель – квадрат . или Правило трёх сигм При рассм нормального закона распределения выделяется важный частный случай, известный как правило трех сигм. Запишем в-ть т\ч отклонение нормально распр сл\в от мат\ожидания меньше заданной величины D: Если принять D = 3s, то получаем с использованием таблиц значений функции Лапласа: Т.е. в-ть т\ ч сл\в отклонится от своего мат\о на величину, большую чем утроенное среднее квадратичное отклонение, практически равна нулю. Это правило называется правилом трех сигм. На практике считается, что если для какой – либо сл\в выполняется правило трех сигм, то эта сл\в имеет нормальное распределение. Пример. Нормально распределенная сл\в Х задана своими параметрами – а =2 – мат\о и s = 1 – среднее квадратическое отклонение. Требуется написать плотность вер-ти и построить ее график, найти в-ть того, Х примет значение из интервала (1; 3), найти вероятность того, что Х отклонится (по модулю) от математического ожидания не более чем на 2. Плотность распределения имеет вид: Построим график: Найдем в-ть попадания случайной величины в интервал (1; 3). Найдем в-ть отклонения сл\в от мат\о на величину, не большую чем 2. Тот же результат может быть получен с использованием нормированной функции Лапласа. 24. Центральная предельная теорема. Понятия о теореме Ляпунова и её значение. Пример. Теорема. Если сл\в Х представляет собой сумму очень большого числа взаимно независимых сл\в, влияние каждой из которых на всю сумму ничтожно мало, то Х имеет распр, близкое к нормальному. На практике для большинства сл\в выполняются условия теоремы Ляпунова.
25. Понятие двумерной (n-мерной) сл\вел. Примеры. Таблица её распределения. Условные распределения и их нахождение по таблице распределения. Существуют сл\в, которые определяются двумя, тремя и т.д. числами. Такие сл\в называются двумерными, трехмерными и т.д. В зависимости от типа, входящих в систему сл\в, системы могут быть дискретными, непрерывными или смешанными, если в систему входят различные типы сл\в. Рассм системы двух сл\в. Законом распределения системы сл\в называется соотношение, устанавливающее связь между областями возможных значений системы сл\в и вероятностями появления системы в этих областях. Функцией распределения системы двух сл\в наз ф-я двух аргументов F(x, y), равная в-ти совместного выполнения двух неравенств X<x, Y<y. Свойства функции распределения системы двух сл\в: 1) Если один из аргументов стремится к плюс бесконечности, то ф-я распр системы стремится к ф-ии распр одной сл\в, соответствующей другому аргументу. 2) Если оба аргумента стремятся к бесконечности, то ф-я распр системы стремится к 1. 3) При стремлении одного или обоих аргументов к минус бесконечности ф-я распр стремится к 0. 4) Ф-я распр является неубывающей функцией по каждому аргументу.
5) В-ть попадания случайной точки (X, Y) в произвольный прямоугольник со сторонами, параллельными координатным осям, вычисляется по формуле: Распределение одной сл\в, входящей в систему, найденное при условии, что другая сл\в приняла определенное значение, называется условным законом распределения.
26. Ковариация и коэффициент корреляции (КК) сл\величин. Связь между некоррелированностью и независимостью сл\величин. Коэффициентом корреляции сл\в Х и Y называется отношение корреляционного момента к произведению средних квадратических отклонений этих величин КК является безразмерной величиной. КК независимых сл\в = нулю. Абсолютная величина КК не превышает единицы. Сл\в называются коррелированными, если их корреляционный момент отличен от нуля, и некоррелированными, если их корреляционный момент равен нулю. Если случайные величины независимы, то они и некоррелированы, но из некоррелированности нельзя сделать вывод о их независимости. Если две величины зависимы, то они могут быть как коррелированными, так и некоррелированными. Часто по заданной плотности распределения системы сл\в можно определить зависимость или независимость этих величин. Наряду с КК степень зависимости сл\в можно охарактеризовать и другой величиной, которая называется коэффициентом ковариации. Коэффициент ковариации определяется формулой:
|