Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Несовместимые и совместимые события. Сумма событий. Теорема сложения вероятностей с доказательством. Пример





Два соб-я наз-ся несовместимыми, если 1 соб-е исключает появление другого. Неск-ко соб-ий наз-ся попарно несовместимыми, если появл-е любого из этих соб-ий исключает появление других.

Сложение вероятностей зависит от совместности и несовместности событий.

Несовместные события. Вер-ть суммы двух несовм соб А и В равна сумме вер-ей этих соб-й. Это вытекает из того, что множество С = А+В включает подмножества А и В, не имеющие общих точек, и Р(А+В) = Р(А)+Р(В) по опр вер-ти на основе меры. По частотному опр-ю вер-ти в силу несовместности соб-й имеем: P(A+B) = = + = P(A) + P(B), где n и m - число случаев появления соб-й А и В соответственно при N испытаниях.

Противоположные события также являются несовместными и образуют полную группу. Отсюда, с учетом: P() = 1 - Р(А). В общем случае для группы несовместных событий: P(A+B+...+N) = P(A) + P(B) +... + P(N), если все подмножества принадлежат одному множеству соб-й и попарно несовм. А если эти подмножества образуют полную группу соб-й, то с учетом: P(A) + P(B) +... + P(N) = 1

Совместные события. Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления:

P(A+B) = P(A) + P(B) - P(A×B).

Разобьем события А и В каждое на два множества, не имеющие общих точек: А', A'' и B', B''. Во множества А'' и B'' выделим события, появляющиеся одновременно, и объединим эти множества в одно множество С. Для этих множеств действительны выражения:

С = A''×B'' º А'' º В'' º А×В, P(C) = P(A'') = P(B'') = P(A×B).

P(A) = P(A')+P(A''), P(A') = P(A)-P(A'') = P(A)-P(A×B).

P(B) = P(B')+P(B''), P(B') = P(B)-P(B'') = P(B)-P(A×B).

Множества A', B' и С попарно несовм: P(A+B) = P(A'+B'+C) = P(A') + P(B') + P(С).

В общем случае, для m различных событий А1, А2,..., Аm:

P(A1+...+ Am) = P(Ai) - P(Ai×Aj) + P(Ai×Aj×Ak) -...+(-1)m+1P(A1×A2×... ×Am).

Теорема сложения: Вер-ть суммы двух несовм-х соб-й = сумме вер-тей этих соб. P(A+B+…+К)=P(A)+P(B)+…+Р(К)

Доказательство:Пусть в рез-те испытания из общего числа n равновозможных и несовм-х исходов испытания соб-ю А благоприятствует m1 случаев, а соб-ю В – m2 случаев. Согласно классич определению P(A)=m1\n, P(В)=m2\n. Т.к соб А и В несовм-е, то ни 1 из случаев, благоприят-х 1 из этих соб-й, не благоприят-т другому. Поэтому событию А+В будет благоприятств-ть m1+m2 случаев, следовательно:

Следствие 1: Сумма вер-ей событий, образующих полную группу, равна 1: P(A)+P(B)+…+Р(К)=1, Если события А,В,…,К образуют полную группу, то они единственно возможные и несовместимые.

ТК событияА,В,…,К – единственно возможные, то событие А+В+…+К, состоящее в появлении в рез-те испытания хотя бы одного из этих событий, явл-ся достоверным, его вер-ть = 1: Р(А+В+…+К)=1 В силу т\ч события А,В,…,К – несовместимые, к ним применима теорема сложения: Р(А+В+…+К)=Р(А)+Р(В)+…+Р(К)=1

Следствие 2: Сумма вер-ей противоположных событий = 1 Р(А)+Р(`А)=1 Это следует из т\ч противоположные события образуют полную группу.

Пример 1. В урне 30 шаров: 10 красных, 5 синих и 15 белых. Найти вероятность появления цветного шара. Решение. Появление цветного шара означает появление либо красного, либо синего шара.

Вероятность появления красного шара (событие А) Р (А) = 10 / 30 = 1 / 3. Вероятность появления синего шара (событие В) Р (В) = 5 / 30 = 1 / 6. События А и В несовместны (появление шара одного цвета исключает появление шара другого цвета), поэтому теорема сложения применима. Искомая вероятность P (A + B) = P (A) + P (B) = l / 3 + l / 6 = l / 2.







Дата добавления: 2015-06-15; просмотров: 533. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия